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Lecture 4
Linear random coefficients 

models

Rats example

• 30 young rats, weights measured weekly for five weeks
• Dependent variable (Yij) is weight for rat “i” at week “j”
• Data:

• Multilevel: weights (observations) within rats (clusters)
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Individual & population growth

Pop line
(average growth)

Individual Growth Lines

Rat “i” has its own 
expected growth line:

There is also an 
overall, average 
population growth 
line:
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Study Day (centered)

E[Yij | b0i,b1i] = b0i + b1ix j

E[Yij ] = β0 + β1x j

Improving individual-level estimates
• Possible Analyses

1. Each rat (cluster) has its own line: 
intercept= bi0, slope= bi1

2. All rats follow the same line: 
bi0 = β0 ,   bi1 = β1

3. A compromise between these two:
Each rat has its own line, BUT…
the lines come from an assumed distribution

E(Yij | bi0, bi1) = bi0 +  bi1Xj

bi0 ~ N(β0 , τ0
2)

bi1 ~ N(β1 , τ1
2)“Random Effects”
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Pop line
(average growth)

Bayes-Shrunk Individual Growth Lines

A compromise: 
Each rat has its own line, but information is 

borrowed across rats to tell us about individual 
rat growth
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Bayes-Shrunk Growth Lines

Bayesian paradigm provides methods for 
“borrowing strength” or “shrinking”
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(average growth)
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Inner-London School data:
How effective are the different schools? 

(gcse.dat,Chap 3)
• Outcome: score exam at age 16  (gcse)
• Data are clustered within schools
• Covariate: reading test score at age 11 

prior enrolling in the school (lrt)
• Goal: to examine the relationship 

between the score exam at age 16 and 
the score at age 11 and to investigate 
how this association varies across 
schools

Fig 3.1: Scatterplot of gcse vs lrt for 
school 1 with regression line)
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Linear regression model with random 
intercept and random slope

Yij = b0 j + b1 j xij + εij

b0 j ~ N(β0,τ1
2)

b1 j ~ N(β1,τ 2
2)

cov(b0 j ,b1 j ) = τ12

centered

Alternative Representation
Linear regression model with random 

intercept and random slope
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Fig 3.3: Scatterplot of intercepts 
and slopes for all schools with at 

least 5 students

Linear regression model with random 
intercept and random slope
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The total residual variance is said to be heteroskedastic
because depends on x
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Empirical Bayes Prediction
(xtmixed reff*,reffects)

In stata we can calculate:

( ˜ b 0 j , ˜ b 1 j )

( ˆ b 0 j , ˆ b 1 j )

EB: borrow strength across schools

MLE: DO NOT borrow strength across 
Schools      

1.839.041.839.21Tau_11^2

gllamm

0.087.440.847.52Sigma

0.150.50Rho_21

1.27

0.031

0.01

0.40

SE

56.57

3.04

0.56

0.02

Est

Random Intercept

1.2555.37Sigma^2

0.070.18Tau_21

0.000.01Tau_22^2

0.020.12Tau_22

0.303.01Tau_11

xtmixed

Random

0.020.56lrt

0.40-0.12_cons

SEEst

Random Intercept and Slope

Correlation 
between 
random 
effects

Between Schools 
variance

Within school 
variance
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Fig 3.9: Scatter plot of EB versus ML 
estimates

Fig 3.10: EB predictions of school-specific 
lines
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Random Intercept EB estimates and 
ranking (Fig 3.11)

Growth-curve modelling
(asian.dta)

•Measurements of weight were recorded for children
up to 4 occasions at  6 weeks, and then at 8,12, and 27 
months

•Goal: We want to investigate the growth trajectories of
children’s weights as they get older

•Both shape of the trajectories and the degree of variability 
are  of interest
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Fig 3.12: Observed growth trajectories for 
boys and girls

What we see in Fig 3.12?

• Growth trajectories are not linear
• We will model this by including a 

quadratic term for age
• Some children are consistent heavier 

than others, so a random intercept 
appears to be warranted
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Quadratic growth model with random 
intercept and random slope

ijijjjijijij xxxY εςςβββ +++++= 21
2

321

Fixed effects Random effects

Random effects are multivariate normal with means 
0, standard deviations tau_11 and tau_22 and 
covariance tau_12

0.247.700.297.82Age

0.050.580.050.73Sigma

0.330.27Rho_21

0.10

0.11

0.18

SE

0.92

-1.71

3.43

Est

Random Intercept

09.090.50Tau_22

0.130.64Tau_11

Random

0.09-1.66Age^2

0.143.49_cons

SEEst

Random Intercept and 
Slope

Random intercept 
standard deviation

Level-1 residual 
standard deviation

Results for Quadratic Growth Random Effects Model

Correlation between baseline and 
linear random effects….
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Two-stage model formulation
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Fixed Effects Random Effects

Results from Random intercept and slope model 
with and without inclusion of gender effect

0.17-0.23Girl*Age

0.21-0.54Girl

0.257.810.247.70Age

0.050.570.050.58Sigma

0.340.190.330.27Rho_21

09.09

0.13

0.09

0.14

SE

0.50

0.64

-1.66

3.49

Est

Random Intercept and 
Slope

0.090.50Tau_22

0.130.59Tau_11

Random

0.09-1.66Age^2

0.173.75_cons

SEEst

Random Intercept and 
Slope
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More on interpreting results

• See handout!


