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ABSTRACT Administrative records are a promising data source for es-
timating Census coverage or identifying people missed in the Census. An
important unsolved problem in using records is determining which of them
correspond to people actually resident on Census day. We propose a hi-
erarchical model in which one level describes the migration process, and
the other describes the probabilities of observation in each of the avail-
able record systems. The observation model uses the full information in
the records, including the dates associated with the records and available
covariate information, and can accommodate a variety of record types, such
as tax records, Medicare claims, and school enrollment lists. In addition,
multiple record systems can be modeled concurrently. Posterior distribu-
tions of the in- and out-migration dates are obtained, leading to an estimate
of the probability of residency in the area on Census day. This work could
be useful in the context of an administrative records census, or as a way of
expanding the role of administrative records in triple system estimation.

1 Introduction

This work utilizes administrative records to help predict Census day resi-
dency. This is done using a Bayesian hierarchical model both of migration
and of observation in each of the available record systems. This is useful in
the context of an administrative records Census, or as a way of expanding
the use of administrative records in multiple system estimation.

This work has its basis in the methods of multiple system estimation.
Multiple recapture estimation was originally developed as a way of estimat-
ing animal populations, but has found application in Census undercount
estimation, as well as a variety of other fields. To estimate the size of an
animal population, one might capture a set of animals, mark them in some
way, release them, and then make further captures at later points in time.
The possible capture histories are represented by cells of a 2¥ contingency
table, where k is the number of captures. One cell will be missing: the cell
for individuals missed by all captures. The role of modeling is to estimate
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the size of this cell, thus estimating the total population size. The situation
with two captures is known as dual system estimation, and similarly, that
with three captures is called triple system estimation. See Pollock (1991)
or Seber (1982) for more information on multiple system estimation.

Early work in this field rested on a number of assumptions: the popula-
tion is closed (no birth, death, or migration), the captures are independent,
each individual has the same probability of capture, and individuals can
be perfectly matched between captures.

Recent research has relaxed some of these assumptions. Loglinear models
have been used to model the cell counts of the contingency table (Bishop et
al., 1975; Fienberg, 1972), allowing dependencies among captures. Unequal
capture probabilities can be accommodated by calculating estimates by
strata, or by a Rasch model (Fienberg et al., 1999). Bayesian methods
have also been employed in this problem. In particular, George and Robert
(1992) use a Gibbs sampling approach, while Smith (1991) compares Bayes,
empirical Bayes, and Bayes empirical Bayes solutions.

Our approach is also related to the literature on the estimation of migra-
tion parameters for animal populations. There is a large literature on this
topic, mostly as an outgrowth of the capture-recapture work. Most of these
papers assume that several (usually 3-5) geographical areas have been de-
fined and attempt simultaneously to estimate the population size and the
transition probabilities among the areas. This is done by capturing animals
in each location at several times, and recording where and when each an-
imal is observed. Estimates of the total population size and the migration
rates are then obtained. Much of this work involves modeling migration
using Markov Chains (Brownie et al., 1993; Hestbeck et al., 1991). Dupuis
(1995) provides a Bayesian approach.

In the context of the US Census, triple-system estimation has been sug-
gested as a way to estimate the total population size. The three systems are
usually taken to be the Census itself, the Post-Enumeration Survey (PES),
and a series of administrative lists. There has been extensive research on
the use of administrative records in the Census, for triple system estimation
as well as other potential uses. See Zaslavsky and Wolfgang (1993), Larsen
(1999), or Scheuren (1999) for more information on this topic.

One of the drawbacks of the use of administrative records is that their
coverage period does not coincide with Census day, and may extend con-
siderably earlier. We therefore develop a model of migration that allows
prediction of whether someone is still a resident on Census day, given that
she appears in one or more record systems.
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2 Overview of Model

We propose a hierarchical model in which one level describes the migra-
tion process, and the other describes the probabilities of observation in
each of the available record systems. The observation model uses the full
information in the records, including the dates associated with the records
and available covariate information, and accommodates a variety of record
types, such as tax records, Medicare claims, and school enrollment lists. In
addition, multiple record systems can be modeled concurrently. The poste-
rior distributions of the in- and out-migration dates are obtained, leading
to an estimate of the probability of residency in the area on Census day for
each individual.

Suppose we have a series of record systems (types of administrative
records, possibly a Census and/or a PES) from a geographic area. Each
record is dated, providing evidence of a person being a resident in the area
on that date. The total time period covered is Ty to T} . Define a population
consisting of all people living in this area at some point during this time
interval who were captured by at least one of the systems. A later version of
the model will allow for individuals who were missed by all of the systems
by imputing missing individuals.

We are interested in modeling the in- and out-migration times from the
area: to; (the time person ¢ moved in) and t;; (the time person ¢ moved
out). The goal of the inference is to estimate the size of the population at
a particular point in time, usually Census day.

Our hierarchical model has 3 levels:

Level 1 (Observational):

P(observation history|migration dates, covariates, parameters)
Level 2 (Migration):

P(migration dates|covariates, parameters)

Level 3: Priors on the parameters

Level 1 models each individual’s observation in the record systems. Under
the assumption of independence, the likelihoods of observation in each of
the systems are multiplied together to obtain the full observation likelihood.
This assumption can be modified, as discussed in Section 3.3. Level 2 de-
scribes the migration history for each individual: the in- and out-migration
dates. These migration events are observed through the observation his-
tory in Level 1. Level 3 describes prior beliefs about the parameters, either
fixing them at pre-specified values, or specifying non-degenerate prior dis-
tributions.



1. Predicting Census Day Residency 4
3 Details of Model

In this section we present specific examples for the models at each level.
More complex models can also be specified within this overall structure. In
the notation that follows, ¥ represents the vector consisting of all of the
Level 3 parameters. Specific components of ¥ are described later.

3.1 Magration Model

Level 2 describes the migration of the individuals, i.e. the time when the
individual resided in the area. Each individual’s migration history is sum-
marized by two variables: ty;, the time person i moved into the area, and
t1;, the time person i moved out of the area.

We model the population as a mixture of two types of people: never-
movers, who never move in or out of the area, and movers, who migrate
to or from the area (although not necessarily during the time period of
observation). The in- and out-migration dates are modeled using mixture
distributions to account for the two types of individuals. The parameter
r represents the fraction of never-movers in the area at a given point in
time (considered to be constant across time). For the movers, we assume a
stationary process with a constant hazard of moving (A) that is the same
for each individual.

The version of the model simulated in this paper (Section 5) assumes that
r = 0 (there are no never-movers). From these assumptions we can deduce
g, the proportion of the population that was in the area at the beginning of
the time period of interest: ¢ = m This model implies a censored
exponential distribution for the length of residency and a mixture for y;,
with a mass q at Tp and a uniform distribution over the remaining time,
to Tl-

3.2 General Observation Model

The observation model (Level 1) describes the process of observing the in-
dividuals in the record systems. The migration history is observed through
these record systems, as each person’s opportunity to be observed depends
on their migration history.

We first give the general framework for a single record system, and then
discuss methods of combining observations from multiple systems. Section
3.4 provides examples of specific record systems.

A generic approach has one indicator variable for whether an individual
was in that record system type (if she filed a tax return, had a driver’s
license, etc.). Another variable indicates the date when she would appear.
The interaction of these and the migration dates determines whether the
individual would be observed in the record system file available. The exact
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interpretation of these variables is specific to each record system.
Let j index the type of record, and i index individuals. The following
variables are defined for each of the record systems (j = 1,..., J):
To; = Beginning of time period covered by record type j.
T1; = End of time period covered by record type j.
wj; = Indicator for person ¢ having a record of type j.
wji|aj; ~ Bernoulli(aj; = aj(z;, ¥))
oj; represents the probability of individual ¢ having record type
J, and may depend on individual covariates ;.
y;; = Date associated with record type j for individual .
Yji ~ Fj(xi, 0)
The distribution of y;; depends on the type of record, and possibly
covariates x;.
zj; = Indicator for individual i being observed in file j.
zji = Zj (wji, toi, tris Yji» Tog, Tj)
zji is a function of wj;, y;;, migration dates, and the dates covered
by record system j.

Define Ty = min{Tp;}, the beginning of the time period covered by any
source, and T} = max{Ty;}, the end of the time period covered by any
source. This notation for the observation model can accommodate a vari-
ety of record systems, including administrative records files, the Census,
and the PES. The framework stays the same, but the specifics of the dis-
tributions depend on the type of record system.

3.8 Combining observation models from multiple record
systems

Under the assumption that being in a record system (wj;) and the date
associated with that (y;;) are independent across systems, conditional on
migration dates, the probability distributions of (wj;,y;;) for each system
are jointly independent. In this case, the full observation model is just the
product of the individual record observation likelihoods:

L(=|®) o [T | TT Plwjileji) Pyjilwsir aji) P(zjilysis wyis toss tris Tojs Tij)
i i

- P(toi, t1i| A, q)-

Although independence of the systems is a fairly common assumption in
multiple system estimation, many studies have shown that it is not a good
approximation for administrative records. To model dependence among the
wj;’s, loglinear models could be utilized. Dependence among the y;;’s (for
example, if both driver’s license renewal dates and car registration files were
linked to an individual’s birthday) could be modeled directly. The specifics
would depend on the exact records involved.
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3.4 Specific observational models

The following are specific examples of the observation model.

Census

In the case of the Census, weo; ~ Bernoulli(ag;) for all 4, where a¢; depends
on each individual’s characteristics, as well as the undercount rate. Since
the Census records nominally cover just one day, yc; = April 1 for everyone
(yoi = ye for all ©), and Toe and Ty are both April 1. The function for
zc; is then zg; = 1 if weo; = 1,t0; < April 1 < t15, and z¢; = 0 otherwise.

Tax Returns

For tax returns, wp; ~ Bernoulli(ar;), where ar; represents the probabil-
ity that someone with person i’s characteristics files a tax return. This may
depend on characteristics such as age or region of the country. Since tax re-
turns are generally filed around April 15, the distribution of yr; is centered
around April 15, with a distribution of early and late filers. Given the plen-
tiful tax data, a non-parametric estimate of the distribution of filing dates
(yri) could be utilized. Tyr is the beginning of the time period covered by
the file, and 77 is the end date of the period covered by the file. The func-
tion for zr; is then zpr; = 1 if wr; = 1,t0; < y1i < t1i, Tor < y1i < Thr,
and z7; = 0 otherwise.

Driver’s Licenses

Although driver’s licenses are unlikely to be used as a record system in
the Census context because of the complications of disparate state laws
and data files, they are a good, intuitive example of how the model works.
In this case, wp; ~ Bernoulli(ap;), where ap; represents the probability
that someone with person ¢’s characteristics has a driver’s license and could
depend on personal characteristics and location in the country. Since most
driver’s licenses are renewed at fixed intervals of some number of years,
typically on the individual’s birthday, we assume that the distribution of
renewal dates, yp;, is uniform. Since we are only concerned with the most
recent renewal, the right endpoint of this distribution is T} p (the endpoint
of our observation interval), and the left endpoint is Ty1p — R, where R is
the length of time between renewals. We then assume that anyone in the
area with a driver’s license would have had to renew their license at some
point in this interval. The function for zp; is then zp; = 1 if wp; = 1,t9; <
ypi < t1i,Top < ypi <Tip, and zp; = 0 otherwise.

Other Types of Records

Other types of records that could be modeled in this way include the Social
Security Service’s Master Beneficiary Record, which is a list of anyone
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entitled to Social Security Benefits, updated monthly. Each individual has
a probability of being a beneficiary in each month, and his observation date
would be modeled as uniform through the month. The monthly files could
give us fairly precise information on when individuals moved to or from the
area.

Models for Medicare claims would be more complex. We can estimate
the probability that an individual is a Medicare fee-for-service beneficiary.
The temporal distribution of claims is more complicated since some people
will have many claims in a short time period, while others may have claims
very spread out.

4 Inference

4.1 Levels of Inference

The structure of the hierarchical model allows inference on each of the 3
levels: global parameters of coverage probabilities and migration, individual
migration times, and individual observation and record histories. The level
of inference will depend on the goal. For example, inference about the
global migration parameters may be of interest to sociologists interested in
studying migration patterns. This flexibility of levels of inference enables
the model to be useful for a variety of purposes.

In the Census context, we are mostly interested in inference on the second
level, regarding the migration dates for individuals. It is possible to obtain
posterior estimates of individual’s migration dates, which lead to estimates
of the probability of residency, and in turn lead to an estimate of population
size on Census day. An example of this is given in Section 5.

4.2 Computational Methods

Draws from the joint posterior are obtained by running a Gibbs sampler,
which iteratively draws from each of the full conditional posterior distri-
butions and converges to the joint posterior (Geman and Geman, 1984).
Here we present the specifics for the model as described in the simula-
tion presented in Section 5. Discussion is restricted to the distributions
necessary for the simulation, which includes two types of systems: the Cen-
sus and driver’s licenses. The priors used are ac ~ Beta(aa,bay) and
ap ~ Beta(agp,bap). In addition, ¢ and A are considered known and so
are not drawn in the scenario discussed.

Define the full parameter vector © = {{to;}, {t1:}, {weci}, {wpi}, {zci},

{zpi}; {yci}t, {ypi}, A, ¢, ac,ap}-
The Gibbs sampler iterates through the following steps:

1. Global Parameters
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The known variable n;; represents the number of individuals
caught by both systems, n2 is the number of individuals caught
by the driver’s license file and missed by the Census, and n4;
is the number of individuals caught by the Census and not by
the driver’s license file. Finally, n = ni; + nia + no1 is the to-
tal number of individuals caught by any source. The posterior
distributions of ¢ and ap have a form similar to that of a bino-
mial distribution, with a modification to the denominator. This
is explained by considering the 2x2 table formed by the inter-
action of wg; and wp;. Since we only consider individuals who
were in at least one of the systems, the cell wo; = 0,wp; =0 is
not in the model and thus the sum of the probabilities of being
in each of the cells is not 1. This sum is thus in the denomina-
tor. Since the posteriors of ac and ap are not in closed form,
Metropolis-Hastings algorithms with Uniform jumping distribu-
tions were used to obtain posterior draws from them (Gelman
et al., 1995, Chapter 11). The acceptance rate for a had mean
0.286 with standard deviation 0.037, while that for ap had mean
0.348 and standard deviation 0.036. These rates are within the
range recommended by Gelman et al. (1996).

2. Individual Migration Parameters

(@) t0i|O\so; ~ MMt (g (d(toi = To)) + (1 —q)(8(To < to; <T1)))
T{tf; < toi < tg;}
e t& and tY, are bounds on ty;, determined by the set of
records observed
(b) t1i — toi|Ovsy, ~ Exp(A\)I{t]; < t1; < tf]
e tL and tY, are bounds on t;;, determined by the set of

records observed

3. Individual Observation Parameters

(a‘) yC"L|(9\yc1 = TIC
(b) ypi|O\y,; ~ Uniform(yf,i,ygi)
e yL. and yY, are determined by the set of records observed

(¢) weoilO\ye; ~ Bernoulli(ac), unless determined by observation
history

o wo; =11if 20 =1; we; = 01if 205 = 0,t0; < Tho < t1;
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(d) wpi|O\y,,; ~ Bernoulli(ap), unless determined by observation
history

e wp; =1if zp; = 15 wp; = 0if 2p; = 0,t0; < ypi < t1;

The ranges of possible values for ty;, t1; and yp; are determined by the
records observed for each individual and the current values of the other
parameters. Depending on the dates of observation, the posterior distribu-
tion of moving dates might be diffuse across the entire observation period,
or might be more limited. Each individual thus has a different range of
possible values of tg;, t1; and yp; given the observation dates, we;, wp;,
and the migration parameters. The posteriors for the moving dates and
yp; look like the priors, but are either restricted or unrestricted due to the
observation dates. Many of the steps in the Gibbs sampler thus consist of
a set of cases depending on values of z¢;, 2pi, wei, and wp;. Examples of
the types of observed data and the consequences for the ranges of to;, t14,
and yp; are given below. Some break down into cases based on the current
draws of the parameters.

1. Observed in driver’s license file on day yp; and in the Census on day
yci = Tic: For this individual, we know that to; < ypi, t1: > Tic,
we; = 1 and wp; = 1.

2. Not observed in driver’s license file, observed in Census on day yc; =
Tic: The possible ranges of tg; and t1; depend on the current value
of Wp;-

a: wp; = 0: Since the individual does not have a driver’s license,
her absence from the file tells us nothing about her migration
history. We thus only know that to; < Tic < t1;.

b: wp; = 1: The individual renewed her driver’s license, but not
during the time that she was in the area. For a given value of
yp; (drawn from its posterior distribution), we know that the
individual must have either moved in after yp; or out before
yp;- This restricts the possible values of to; and #1;.

3. Observed in driver’s license file on yp;, not in Census file: Again,
there are two cases, depending on the current value of wg;.

a: wg; = 0: Since the person is not in any Census record, this gives
us no information on the individual’s migration history. We only
know that to; < yp; and t1; > yp;.

b: we; = 1: This implies that the person is in the Census, but was
not in the area of interest on Census day. Since our population
is defined as anyone in the area at some point between Ty and
T, we thus know that the individual must have moved into the
area before yp; (to; < ypi), and out of the area after yp; but
before Census day (yp; < t1; < Tic).
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5 Simulation

5.1 Simulation Parameters

We assume that two systems are available: a file of driver’s license records
and the Census. We assume that being in the Census file (w¢;) is indepen-
dent of being in the driver’s license file (wp;) and thus the full observation
likelihood is the product of the likelihoods of being observed in each of the
two systems. The observation period starts at 7o = 0 and ends at 77 = 365
(measured in days).

Census day is at the end of this time period, day 365. The observation
model for the Census is described in Section 3.4. We assume that ac; =
ac for all i, implying that everyone has the same probability of being in
the Census. The observation model for the driver’s licenses is described in
Section 3.4. Again, we assume that ap; = ap for all i. We use a renewal
period of one year (R = 365) and have driver’s license file coverage of one
year, ending at Census day. The distribution of the most recent renewal
date is thus approximated as Uniform(0, 365).

The migration model is that described in Section 3.1, with a mixture
model for ty; and an exponential distribution for the time before moving
out. To simplify this example, ¢ and XA are assumed to be known. The values
are g = .8 and A = 181—25, which correspond to an average duration of stay
of 5 years (Hansen, 1998). As discussed earlier, we assume that there are
no non-movers in the population.

At Level 3, the prior distributions on a¢ and ap are Beta(1,1) priors,
which are non-informative conjugate priors.

5.2 Results

The simulated data set consisted only of people observed in one or both
of the systems, resulting in a sample size of 427. The “true” parameter
values are shown in Table 1.1, as well as posterior estimates from the Gibbs
sampler. The variable N¢ is the size of the population on Census day.
Histograms of the posterior distributions of a and ap are shown in Figure
1, and of N¢ in Figure 2. The vertical bar in each plot represents the “true”
value in the simulation.

The Census file had 370 individuals observed on Census day. The addition
of one record system, the driver’s license file, added 37 individuals to the
Census day population count. In addition, the posterior intervals for the
three main parameters and the population size on Census day covered the
true values. Sensitivity to starting values and priors was checked and all
iterations converged to similar values.

Since our goal is to determine the probability of residency on Census
day, we are primarily interested in the individual migration dates, to; and
t14, and their implications regarding residency on Census day. The main
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TABLE 1.1. Posterior Estimates of Parameter Values

True | Posterior | 95% Posterior
Parameter | Value Mean Interval
q 0.8 NA NA
A o5 NA NA
ac 0.9 0.87 (0.82, 0.92)
ap 0.7 0.71 (0.66, 0.77)
N¢ 408 407 (397, 417)

FIGURE 1. Posterior Distributions of a¢ and ap

i1

0.75 0.80 0.85 0.90 0.95 0.55 0.60 0.65 0.70 0.75 0.80
Probability of having Probability of having
a Census Record a Driver’s License

inference will be for individuals observed in the driver’s license file and
not in the Census. Figure 3 shows the predicted probability of Census day
residency for an individual observed in the driver’s license file at various
points in time, but not in the Census. As might be expected, individuals
observed later are more likely to still be in the area on Census day.

6 Discussion

6.1 FEztensions

The strength of this model lies in its flexibility, specifically its ability to
model many types of records at the same time, either through an indepen-
dence model by multiplying the likelihoods of observation of each type of
record, or through a more complex model. This could be of particular use
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FIGURE 2. Posterior Distribution of Census Day Population Size
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FIGURE 3. Probability of Residency on Census Day for those observed only in
Administrative Records

=
—

= |
=

07 08

0.6

Probability of Residency on Census Day
05

04

o 100 200 300

Date Observed in Administrative Records

with the new Census Bureau StARS data set, which contains data from 5
different records systems.

Heterogeneity of capture probabilities associated with observable charac-
teristics is incorporated by including covariates in the Level 1 (observation
level) models, as in Alho, Mulry, Wurdeman, and Kim (1993). Unobservable
heterogeneity may be modeled through common random effects affecting
the probabilities of an individual being observed in each of several systems
(Darroch et al., 1993). Alternatively, the joint distribution of observation
in all of the record systems could be modeled directly.
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Heterogeneity in the probability of moving can be incorporated by adding
covariates such as demographic or area characteristics to the migration
model, as can seasonality in migration.

The full model includes N, the total number of individuals in the pop-
ulation, including those unobserved. This parameter is not needed in the
current version of the model as it enters only through the distribution of A,
which is considered known for this simulation. A larger model that includes
N will be developed. To calculate the population size on Census day, we
will use the probability of those we observe of being resident on Census
day, as well as weights to represent unobserved individuals.

6.2 Applications

Administrative records, and this model, have great potential to assist in
the estimation of the undercount of the US Census. There are at least two
scenarios regarding the design of a national administrative records sample.
In the first scenario, the Post-Enumeration Survey and the administrative
records cover the same blocks. This leads to triple system estimation (Cen-
sus, Post-Enumeration Survey, and administrative records) for the blocks
where the Post-Enumeration Survey and the administrative records are
available. These results would then be used to adjust counts across the
country.

Under a second scenario, the administrative records are available across
the entire country, not just in the Post-Enumeration Survey blocks. The
records would be matched to each other and to the Census and then used
to provide small area population estimates across the country. The Post-
Enumeration Survey would then be used in estimation of general param-
eters. Although this design requires assembling much larger files, the cost
would not be proportionally more than that required to obtain adminis-
trative records files for just the Post-Enumeration Survey blocks since the
same systems must be accessed.

There are many advantages to using administrative records as a second
national source of information on individuals. The records could be used to
add (or subtract) people for whom we have direct evidence that they were
(or were not) in the area on Census day. The PES can do this as well, but
provides small-area detail only for sample blocks. Hence, estimates would
rely less on synthetic estimates of the undercount; fewer assumptions of
homogeneity across areas would be necessary and local undercount esti-
mates could be obtained more reliably. Finally, this would be a major step
forward in the use of administrative records in the Census. The StARS
database currently under development and results of modeling with it, as
well as the corresponding AREX experiment in the 2000 Census, should
give some indication of the potential for this method.

The migration model described here could reduce some of the problems
associated with the use of administrative records. In particular, it could
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help reduce the amount of field follow-up needed, as it could identify the
people that were more or less likely to still be in the area on Census day.
Finally, the model may be useful to deal with movers in the PES. In that
case, we would observe an individual on a date after Census day, and use
the model “backwards” to predict residency on Census day.

In addition, there is potential for the use of this model in fields such
as demography and sociology, where human migration is a major research
area. The model can be extended to describe a list of events for individuals,
jointly with their movement patterns. It also might be used to help identify
the determinants of migration.
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