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Summary

We critically review and compare epidemiological designs and statistical approaches to estimate
associations between air pollution and health. More specifically, we aim to address the following

questions:

1. Which epidemiological designs and statistical methods are available to estimate associations

between air pollution and health?

2. What are the recent methodological advances in the estimation of the health effects of air

pollution in time series studies?

3. What are the the main methodological challenges and future research opportunities relevant

to requlatory policy?

In question 1, we identify strengths and limitations of time series, cohort, case-crossover and panel
sampling designs. In question 2, we focus on time series studies and we review statistical methods
for: 1) combining information across multiple locations to estimate overall air pollution effects;
2) estimating the health effects of air pollution taking into account of model uncertainties; 3)
investigating the consequences of exposure measurement error in the estimation of the health effects
of air pollution; and 4) estimating air pollution-health exposure-response curves. Here, we also
discuss the extent to which these statistical contributions have addressed key substantive questions.
In question 3, within a set of policy-relevant-questions, we identify research opportunities and point

out current data limitations.
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1 Introduction

The potential for air pollution at high concentrations to cause excess deaths was established in
the mid-twentieth century by a series of air pollution “disasters” in the US and Europe (Logan
and Glasg, 1953; Ciocco and Thompson, 1961) which followed striking increases in mortality. By
the early 1990’s, time series studies, each conducted at a single location (Lipfert and Wyzga,
1993; Pope et al., 1995a; Schwartz, 1995; American Thoracic Society, 1996a,b), showed that air
pollution levels, even at much lower concentrations, were associated with increased rates of mortality
and morbidity in several cities in the United States, Furope and other developed countries. At
present, although these relative rates are small (a few percentage points increase in mortality or
morbidity over a realistic exposure range), the burden of disease attributable to air pollution may
be substantial considering the large population exposed to air pollution and to whom the relative
rates of mortality /morbidity apply (Murray and Lopez, 1996).

The statistical analysis of epidemiological data on air pollution and health presents several
methodological issues (National Research Council, 1998, 1999, 2001). The health effects (acute or
chronic) and exposure (short-term, lifetime) of interest motivate the choice of the epidemiological
design for data collection, and the characteristics of the design influence the statistical methods
to be used. Identification of the unique effects of a specific pollutant requires careful adjustment
for simultaneous exposure to a complex mixture of co-pollutants. Extensive covariate adjustment
is required to control for confounding factors (as for example age effects, and weather variables);
key confounding variables will differ depending on the choice of design. In addition, exposure
measurement error can potentially lead to bias in estimates of the health effects of air pollution.
As much of modern environmental epidemiology is oriented towards the analysis and evaluation of
complex data on the health effects of air pollution, advanced statistical methods, such as generalized
regression models for count and binary time series data (Liang and Zeger, 1986; McCullagh and
Nelder, 1989), generalized additive models (Hastie and Tibshirani, 1990), Cox proportional hazard
models (Cox and Oakes, 1984), and hierarchical models (Lindley and Smith, 1972; Morris and
Normand, 1992), have figured prominently in epidemiological applications.

In this article, we review some of the most relevant sampling designs and statistical methods
for investigating associations between exposure to air pollution and health outcomes, and discuss
how these statistical methods have provided a clearer understanding of the extent to which air
pollution affects human health. Although there has been progress in the investigation of the associ-
ation between air pollution and health, several important questions still need to be addressed, and
there exists considerable need for further data collection and methodological development. Future
research opportunities, directly relevant to regulatory policy, are identified. We also highlight the
main limitations of the current epidemiological investigations in terms of the data collection, design
and statistical methods, and identify current gaps in research.

More specifically, we address the following questions related to the estimation and interpretation
of the health effects of air pollution:



1. Which epidemiological designs and statistical methods are available to estimate associations

between air pollution and health? What are their strengths and limitations? (Section 2)

2. What are the recent methodological advances in the estimation of the health effects of air
pollution in time series studies? To what extent have recent statistical contributions addressed

key substantive issues? (Section 3)

3. What are the future research opportunities relevant to regulatory policy? What novel statis-

tical methods need to be developed to address these questions? (Section 4)

In summary, in this paper we bring together methodological and substantive contributions in the
estimation of the health effects of air pollution. These two research focus have been reviewed and
discussed, separately: for example, see Patil et al. (1998); Thomas (2000); Guttorp (2000) for en-
vironmental statistical reviews and Lipfert (1994); Schwartz (1994a); Dockery and Pope (1994);
Pope et al. (1995a); Thurston (1996) for reviews of epidemiological evidence of health effects of
particulate air pollution.

2 Epidemiological Designs and Statistical Methods

Most of the air pollution studies on humans have been observational studies.! Furthermore, the
great majority of air pollution studies are also “opportunistic” studies that arise out of the op-
portunity to combine data from sources compiled for other purposes, and are often limited by the
type, structure, and amount of data available. One of the main data opportunities in air pollution
research is the wealth of available ambient monitoring data (see for example the Aerometric Re-
trieval Information System http://www.epa.gov/airs/airs.html). Monitors are located at fixed
sites, often chosen for regulatory purposes, and thus are best at capturing time-varying ambient
and local source concentrations of selected pollutants.

Here, we assume that assessing the health effects of ambient air pollution on individuals in a
population is the primary goal of air pollution epidemiology studies. Health effects can be either
acute or chronic. Acute effects are transient and due to time-varying exposures. Chronic effects are
more likely due to the cumulative effects of exposure, but could be associated with more complex
functions of lifetime exposure. Qutcomes can be major or minor life events (e.g. death or onset of
symptoms) or changes in function (e.g. vital capacity, lung growth, symptom severity). The nature
of the outcome (e.g. binary or continuous) and the structure of the data lead to the selection of
the model and the types of effects to be estimated. Regression models are generally the method of
choice.

A key design consideration for statistical analysis is whether there is sufficient variation in the

exposure. For exposure to ambient air pollution, the sources of variation come from the temporal

'The few exceptions are chamber studies of gaseous pollutants and microarray gene expression analysis of PM
constituents and other pollutants; these will not be discussed in this review.



and/or spatial distribution of pollution. When we consider personal exposure to pollution, the
spatial distribution is broadened to include personal behaviors and individual micro-environments.
Because accurate estimation of relevant exposures for an individual participant can be daunting,
most air pollution studies have used ambient air pollution measurements, often taken from central
site monitors. Misclassification of exposure is a well-recognized limitation of these studies, and it
will be discussed in the next section.

Biases due to confounding and correlation among covariates can never be completely ruled out
in observational data. As a result bias may often dominate efficiency considerations when choosing
among designs. Confounding is present when a covariate that is not part of the exposure casual
pathway, is associated with both the exposure and outcome.

A related issue is the high intercorrelation of different pollutants in the atmosphere. One of the
ways to address the separate effects of highly intercorrelated pollutants has been to conduct studies
in locations where one or more pollutants are absent or nearly so. For multi-location studies, this
can be achieved by designing the study to have large exposure contrasts.

In practice, most air pollution epidemiology study designs have fallen into four types: ecological
time series, case-crossover, panel, and cohort studies. Cross-sectional studies have also been done
but are less common. Conceptually, panel studies collect individual time and space varying out-
comes, exposures, and confounders and therefore they encompass all other epidemiological designs
which are based on spatially and/or temporally aggregated data. In practice, panel studies also
rely on group-level data. The time series, case-crossover, and panel studies are best suited for
estimating the acute effects of air pollution, while cohort studies estimate acute and chronic effects
combined. This section is devoted to a brief description of each study design, identification of the
corresponding approaches to statistical analysis, and presentation of examples. It concludes with

a comparison of these designs.

2.1 Time Series Studies

Time series studies associate time-varying pollution exposures to time-varying event counts. These
are a type of ecologic study because they analyze daily population-averaged health outcomes and
exposure levels. If the health effects are small and the disease outcomes are rare, the bias from
ignoring the data-aggregation across individuals should be small (Wakefield and Salway, 2001).
Generalized Linear Models (GLM) with parametric splines (e.g. natural cubic splines) (McCul-
lagh and Nelder, 1989) or Generalized Additive Models (GAM) with non parametric splines (e.g.
smoothing splines or lowess smoothers) (Hastie and Tibshirani, 1990), are used to estimate effects
associated with exposure to air pollution while accounting for smooth fluctuations in the mortality
that confound estimates of the pollution effect. GAM is the most widely applied method because
it allows for non-parametric adjustments for non-linear confounding effects of seasonality, trends,
and weather variables, and it is a more flexible approach than fully-parametric alternatives like the
GLM with natural cubic spline. However, recently the GAM software implementation in S-Plus has

been called into question and more systematic comparisons between GAM and GLM are underway



(Dominici et al., 2002b; Ramsay et al., 2002). Further details are in section 4.
GAM or GLM for the mortality counts, Y;, and daily levels of exposures, X;, take the following

additive form:
E(Y;) = exp{fo + BXi—¢ + S(time, A1) + S(temp, A2) + v x DOW} (1)

where temp is a measure of temperature (average daily and/or dew point), DOW are indicator
variables for day of the week and / is the lag of the pollution exposure which is generally restricted
from 0 to 7 days. The smooth function S(-,A) denotes a smooth function of a covariate (calendar
time, temperature, humidity) often constructed using smoothing splines, loess smoothers, or natural
cubic splines with a smoothing parameter A. The smoothing parameter A represents the number of
degrees of freedom in the smoothing spline, the span in the loess smoother and A — 2 interior knots
in the natural cubic splines. The parameter of interest 5 describes the change in the logarithm of
the population average mortality count per unit change in X;_,, and it is generally interpreted as
the % increase in mortality per 10 unit increase in ambient air pollution levels at lag £. Typically
residual serial dependence is negligible in mortality time series with adequate control for temporal
trends and can be ignored in the analysis. Residual serial dependence is more common in morbidity
time series (Sheppard et al., 1999) and adjustment is possible (Lumley and Heagerty, 1999).

Rather than focus on the effect associated with a single lag of a pollution variable, distributed
lag models and time-scale models can be used to estimate cumulative and longer time-scale health
effects of air pollution. Distributed lag models (Almon, 1965; Zanobetti et al., 2000b, 2002) are
used to estimate associations between health outcome on a given day, and air pollution several days
prior by replacing 8X; in (1) with Bzle e X¢ g, Zle n¢ = 1 where 6 measures the cumulative
effect, and 7, measures the contribution of the lagged exposure X; ;4 to the estimation of §. Time-
scale models (Zeger et al., 1999; Schwartz, 2000b, 2001; Dominici et al., 2002c) are used to estimate
associations between smooth variations of air pollution and daily health outcomes by replacing
BX; in (1) with 33, BeWik, Sop_, Wit = X; where Wiy, ..., Wiy, ..., Wi is a set of orthogonal
predictors obtained by applying a Fourier decomposition to X;. The parameters §; denote the
log relative rate of the health outcome for increases in air pollution at time scale k. Time scales
of interest are short-term air pollution variations (1 to 4 days) and longer-term variations (1 to 2
months) capturing acute and less acute health effects, respectively. Beyond two months it is likely
that any effects are dominated by seasonal confounding.

The smooth function S(time, ;) in the model is used to adjust for smooth fluctuations in
mortality over time, so that only shorter-term variation in mortality and air pollution (less than 2
months) is used to estimate 5 (Samet et al., 1995; Kelsall et al., 1997). The smoothing parameter
A1 can be pre-specified based upon prior epidemiologic knowledge of the time scale of the major
possible confounders. For non-accidental mortality studies, a reasonable choice is to set A; equal
to seven degrees of freedom per year of data so that little information from time scales longer
than approximately two months is included when estimating 5. This choice largely eliminates

expected confounding from seasonal changes in mortality (e.g. influenza epidemics), and from



longer-term trends (e.g. changes population size, population composition, medical practice, or
health behaviors), while retaining as much information as possible.

Similarly, to control for weather, smooth functions of temperature variables, S(temp, A2), such
as same day temperature, average temperature for the three previous days, maximum temperature,
and the analogous functions for dew point and/or humidity are included in the model. In many
United States cities, mortality decreases smoothly with increased temperature until reaching a
relative minimum and then increases quite sharply at higher temperatures. Here a smoothness
parameter greater than three is necessary to capture the highly non-linear bend in mortality as a
function of temperature. See Kelsall et al. (1997); Cakmak et al. (1998) for further discussion of
adjustments for confounding factors in time series studies.

The National Morbidity, Mortality and Air Pollution Study (NMMAPS) (Samet et al., 2000c,b,a)
is the largest multi-site time series study yet conducted. In each of 90 cities the daily total mortality
count was regressed on P Mg air pollution (particulate matter less than 10 microns in aerodynamic
diameter) using model (1) with lags £ = 0,1, and 2 to estimate the relative increase in mortality
rates associated with an incremental increase of 10 pg/m? of PMjy.

The NMMAPS modeling approach uses the same set of confounding variables in the different
locations, with the same number of degrees of freedom. Alternative approaches would have been
to select these confounding variables differently within each city, for example by inspection of the
autocorrelation function of the residuals of the mortality time series or by minimizing the Akaike
Information Criterion (AIC) (Akaike, 1973). Although there are several reasonable alternatives for
obtaining adequate control for confounding, an optimal method has not been identified.

Unlike most other air pollution time series studies that concentrate on a single city, the goal of
NMMAPS is to estimate city-specific, regional, and national effects of PMjy on mortality. Hierar-
chical models are particularly suitable for combining relative rates across locations. These methods

and further NMMAPS results are discussed in the following sections.

2.2 Case-Crossover Studies

The case-crossover design is used to estimate the risk of a rare event associated with a short-
term exposure. It was originally proposed by Maclure (1991) to study acute transient effects of
intermittent exposures. The case-crossover design can be viewed heuristically as a modification of
the matched case-control design (Breslow and Day, 1980; Schlesselman, 1994) where each case acts
as his/her own control, and the distribution of exposure is compared between cases and controls.
The distinction from a case-control study is that exposures are sampled from an individual’s time-
varying distribution of exposure. More specifically, the exposure at the time just prior to the event
(the case or index time) is compared to a set of control or referent times that represent the expected
distribution of exposure for non-event follow-up times. In this way, the measured and unmeasured
time-invariant characteristics of the subject (such as gender, age, smoking status) are matched,
minimizing the possibility of confounding.

In the last decade of application, it has been shown that the case-crossover design is best suited



to study intermittent exposures inducing immediate and transient risk, and abrupt rare outcomes
(Maclure and Mittleman, 2000). This design has been found to be topical for estimating the risk of
a rare event associated with a short-term exposure because the widespread availability of ambient

monitoring data presents opportunities to further analyze existing cases series from case-control

studies.
The data for the case-crossover design consist of exposure measures X;; for subjectsi =1,...,n
at times t = 1,...,T, the inder times t;, + = 1,...,n, and individual characteristics that can be

used to evaluate effect modification (e.g. smoking status). The referent sampling scheme determines
the referent sets W; of exposure that are used in the analysis. Estimates of the relative risks are

obtained by solving the following estimating function:

ZteﬂX”

Ui(B) = Xiy; — Z o P08 (2)

teW;

For some referent sampling schemes, this estimating function is identical to the score equation
derived from a conditional likelihood. For others there is no corresponding conditional likelihood
(Lumley and Levy, 2000). Standard conditional logistic regression software can be used for this
analysis.

A key difficulty in case-crossover studies is how to properly define the referent sets W;. Control
for bias in the estimation of the relative risk 8 is the dominant concern in the choice of the referent
sampling strategy, although the size of the referent set also affects efficiency. Two main sources of
bias in case-crossover studies have been identified. The first arises from the trend and seasonality
in the air pollution time series. Since case-crossover comparisons are made within subjects at
different points in time, the case-crossover analysis implicitly depends on the assumption that the
exposure distribution is stationary. The long-term time trends and seasonal variation inherent in
air pollution time series violate this assumption (Navidi, 1998; Bateson and Schwartz, 1999; Lumley
and Levy, 2000; Bateson and Schwartz, 2001; Levy et al., 2001a).

The second source of bias is called overlap bias. If the referent windows W;, 1 = 1,...,n, are
exactly determined by the case period and are not disjoint, then the independent sampling inherent
in the conditional likelihood approach is invalidated (Austin et al., 1989; Lumley and Levy, 2000).
Lumley and Levy (2000) quantified the overlap bias analytically, and through simulations studies,
showed that the direction is unpredictable and the magnitude is a function of the size of the
coefficient 5. However, for the small effects seen in air pollution epidemiology, current experience
suggests that overlap bias is similar to the small-sample bias, e.g. the bias obtained by estimating
B in (2) with a small number of referents.

Referent sampling approaches that have been proposed to control for bias in cases-crossover
studies include: Ambi-directional; Symmetric bidirectional, Semi-symmetric bidirectional, and Time-
stratified sampling. The Ambi-directional sampling, first proposed by Navidi (1998), selects referents
from both before and after the event. While the approach reduces bias due to to lack of station-

arity?, a limitation of Navidi’s implementation is that the entire exposure time period is used as a

2Note that sampling exposures after the event is only valid when the subjects are still at risk and the event has



referent set for each case time. When only a single ambient exposure series is available, Navidi’s
approach reduces to a Poisson regression model without adjustment for time-varying confounders
(Lumley and Levy, 2000), although inclusion of time varying confounders is possible.

Symmetric bidirectional sampling selects referent sets based upon a pre-specified structure ex-
actly determined by the index time. For examples, Schwartz and Lee (1999) and Neas et al. (1999)
used referents at 7, 14, 21 days before and 7, 14, 21 days after the index time. Bateson and Schwartz
(1999) showed that using this approach to referent sampling can adjust for temporal confounding
by design. However, since the symmetric bidirectional referent sampling scheme produces a referent
set that is completely defined by the index time, it is subject to overlap bias.

Semi-symmetric bidirectional sampling (Navidi and Weinhandl, 2002) almost completely elim-
inates overlap bias by randomly selecting a single referent time among a prespecified set of times
before and after the case time. This scheme can be viewed as randomly selecting referents from
one of two time stratified samples.

Time-stratified sampling (Lumley and Levy, 2000) divides a priori the time period into fixed
strata and uses the remaining days in a stratum as referents for a case that falls in that stratum. For
example days of the week within calendar months could define strata. Thus, a case on the second
Sunday in December would be compared with all the other Sundays in December that year. Because
the pre-specified strata are fixed and disjoint, the time-stratified referent sampling scheme is not
subject to overlap bias, and it therefore preserves the validity of the conditional logistic regression.
In addition, by using strata from short time periods that are not restricted to be prior to the event,
the time-stratified case-crossover design also avoids bias due to lack of stationarity in the exposure
series (specifically due to season and day of week). Note that a priori time stratification also avoids
the selection bias discussed by Bateson and Schwartz (2001) that arises from sampling from larger
set of referent exposures than those giving rise to the cases.

Recently the case-crossover design has been applied to many studies of air pollution and health
(Schwartz and Lee, 1999; Neas et al., 1999; Peters et al., 2001; Levy et al., 2001b). For example, Levy
et al. (2001b) analyzed the effect of short-term changes in PM exposure on the risk of sudden cardiac
arrest. The sample consisted of cases of paramedic-attended out-of-hospital primary cardiac arrest
who we free of other life-threatening conditions and did not have a history of clinically detected
cardiovascular disease. The cases were obtained from a previously conducted population-based
case-control study and were combined with ambient air monitoring data. The results did not show
any evidence of a short-term effect of PM air pollution on the risk of sudden cardiac arrest in people

without previously recognized heart disease.

2.3 Panel Studies

Panel studies enroll a cohort or panel of individuals and follow them over time to investigate

changes in repeated outcome measures. They are most effective for studying short-term health

not affected subsequent exposure. However, under a rare disease assumption the bias due to sampling after a fatal
event is very small (Lumley and Levy, 2000).



effects of air pollutants, particularly in a susceptible subpopulation. Traditionally, a panel study
design involves collecting repeat health outcome data for all N subjects over the entire time period
of length T' although this can be relaxed with proper accomodation in the analyses. The most
suitable health outcomes vary within a person over the time period of observation. The pollution
exposure measurement could be from a fixed-site ambient monitor, as well as personal monitors.
A variety of models have been used to estimate the effects of pollutants on health in a panel
study setting. A basic model for the mean E(Yj|X;:) (ignoring confounders) is the marginal mean

model, which takes the form
9(E(Yit| Xit)) = Bo + XuBM 3)

where Y;; represents the response to individual ¢ = 1,...,N on day ¢t = 1,...,T, X; is the
exposure, and ¢(-) is a link function (McCullagh and Nelder, 1989). In practice, some of the
predictors are likely to be common to all individuals at time t. Covariates that are time invariant
can be incorporated into an extended model for the intercept. It is often reasonable to assume
that individuals are independent, and the repeat measures over time within individual are not. To
accommodate correlation between repeated measures on the same individual, a related conditional

mean model can be written
9(E(Yie| Xit, b)) = Bo + bi + XuB© (4)

where b; is a random effect with a hypothesized distribution. The random effect allows for individ-
ual variation in the intercept, or when integrated out, induces exchangeable correlation between
measurements on the same individual.

The transition model incorporates previous outcomes into the mean model:
9(E(Yit| Xit, Yie—1, Xir—1)) = Bo + XuB" + (Yiem1y — Xy 1yB")- (5)

The parameters 3, B¢ and BT are defined as marginal, conditional, and transitional effects,
respectively (Diggle et al., 1994). Linear models can be formulated so M, 8¢, and 57 have the
same interpretation, whereas in generalized linear models discrepancies between these parameters
can occur.

Modern approaches to longitudinal data analysis (Diggle et al., 1994), including mixed, marginal,
and transition models and Bayesian hierarchical models can accommodate the complex variance
structure induced by these data. Analysis can be performed using software for linear or gener-
alized linear mixed models (Breslow and Clayton, 1993) such as SAS GENMOD, MIXED or the
GLIMMIX macro (Littell et al., 1996) or Bayesian software such as the BUGS or WinBugs package
(Thomas et al., 1992).

Although estimation of the health effect of the air pollution exposure is often the primary goal
of a panel study, the interpretation of the estimated health effects is often less clear. This is partic-
ularly true when the traditional panel design of observing all N individuals on the same 7' days is
not realized. Whenever panel members do not share the same observation period, parameterization

and estimation of exposure effects should be considered carefully. In many applications it is safest



to separate the components of exposure into average personal exposure (X;) and the day-to-day
within-person deviations from average personal exposure (X;; — X;). A linear regression model for

a continuous outcome would then become
E(Yy | Xit, Xi) = o+ (Xi — X3)Bw + Xif

where Sy, Op represent the within and between-person exposure effect parameters, respectively.
Failing to separate these effects results in an overall exposure effect that combines effects due to
temporal variation in air pollution within subjects and variation of the average exposure between
subjects. An exception to this recommendation is the traditional panel study design which observes
all the subjects at every time point and focuses on daily ambient air pollution measurements. This
is because in traditional panel studies there is no variation in X;, and therefore the parameter
BB is not identifiable. However, studies that observe individuals over different times and only
use ambient measurements have variation in X; that is due to seasonal differences in pollution
levels. The separation of the within and between effects can at least partially take into account
uncontrolled seasonal confounding.

When interpretation of panel study effects includes the within-person effect (B ), then it is
important to adjust for time-varying confounders such as indicators for day of week, functions
of season and weather, and time-varying personal behaviors. Additional variables that do not
vary within individual (e.g. gender, baseline lung function), can be incorporated into the model to
improve efficiency of estimation. They also are useful variables for investigating effect modification,
e.g. for testing for differential effects of air pollutants across different subpopulations.

Beyond the structure induced by covariates, variation in panel study data can be due to cluster-
ing of outcomes within individuals, similarities of observations close in time, and/or measurement
error. Conditional and transition models induce some dependence structure through specification
of the mean model; although additional dependence may be added through specification of the co-
variance structure. In contrast, all dependence in marginal models is specified separately through
the covariance model. In generalized estimating equations (GEE) this is called the working covari-
ance matrix (Zeger et al., 1988). One choice is to use an independence working model, where the
covariance maftrix is proportional to an identity matrix and ignores any serial correlation that may
arise because of the longitudinal nature of panel data. Although working independence may result
in loss of efficiency, it protects against bias that may result when the full covariate conditional mean
does not equal the partly conditional mean specified in the analysis (Pepe and Anderson, 1994).

Although not recommended, a historically popular approach to analyzing panel data is to
aggregate over all measurements on day t to estimate the panel average, also called the panel
attack rate when the outcome is binary (Korn and Whittemore, 1979). Most typically, air pollution
studies regress Y; = ). Yj; on a vector of time-varying exposure and confounding variables, such as
ambient pollutant and meteorological variables. This approach is problematic for several reasons,
many of them related to problems with ecological studies (Sheppard et al., 1996; Sheppard, 2002a,b).

The linear model makes a constant variance assumption over time, and assumes the outcomes on

10



successive days are statistically independent. Estimates could be biased by the pattern of drop-outs
because subject-specific missing data patterns are not taken into account. For binary outcomes
there are additional difficulties due to: 1) model specification, 2) the lack of range restriction for
the outcome, and 3) the dependence of the variance on the mean. Biases due to using ecologic
analysis may be even more problematic when the outcome is not rare (Wakefield and Salway,
2001). Adjustment for some of these problems is possible but rarely undertaken. Although this
approach has been discouraged since the late seventies (Korn and Whittemore, 1979), until recently
it was the most common approach to analysis in asthma panel studies. Even by the late nineties,
with alternative software widely available, the practice had not disappeared completely.

The panel study design is commonly used to study chronic disease exacerbations such as daily
asthma symptoms or lung function. For example, Yu et al. (2000) studied asthma exacerbation by
obtaining daily self-reports of asthma symptoms. These were regressed on air pollution concentra-
tions from ambient monitors to assess the effects of air pollutant excursions from typical levels for
each child’s observation period. This study found the odds of asthma symptoms to be increased by
11% (95% CI 3-20%) for a 10 ug/m? increase in PMiy. Further analysis of this dataset (Slaughter
et al., 2002) using ordinal linear regression (McCullagh, 1980; Heagerty and Zeger, 1996) indicated
there were effects on the severity of attacks as well as on presence of any asthma symptoms.

Studies that follow cohorts of individuals over longer time periods, say multiple years, are
typically referred to as cohort or longitudinal studies rather than panel studies. While the exposure
and outcome characterization will be different, in general the recommended methods of analysis
for longitudinal studies are similar to those outlined either for panel studies or cohort studies,
depending upon the goals of the analyses.

The Southern California Children’s Health Study (Peters et al., 1999b,a; Gauderman et al.,
2000) is one example of a longitudinal study of air pollution health effects. Children from grades
4,7, and 10 residing in twelve communities near Los Angeles were followed annually. Communities
were selected based on diversity in their historical air pollution levels. Longitudinal analyses of lung
function growth using linear mixed models indicated associations of exposure to ambient particles,

NO,, and inorganic acid vapor with reduced lung function growth (Gauderman et al., 2000).

2.4 Cohort Studies

Air pollution cohort studies associate long-term exposure with health outcomes. Either a prospec-
tive or retrospective design is possible. In a prospective design, participants complete a question-
naire at entry into the study to elicit information about age, sex, weight, education, smoking history,
and other subject-specific characteristics. They are followed over time for mortality or other health
events. A measure of cumulative air pollution is often used as the exposure variable. A key design
consideration for air pollution cohort studies is identifying a cohort with sufficient exposure varia-
tion. Individuals from multiple geographic locations must be studied in order to assure sufficient
variation in cumulative exposure, particularly when ambient air pollution measurements are used.

However, by maximizing the geographical variability of exposure, the relative risk estimates from
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cohort studies are likely to be confounded by area-specific characteristics.

Survival analysis tools can evaluate the association between air pollution and mortality. Typi-
cally the Cox proportional-hazards model (Cox and Oakes, 1984; Clayton and Hills, 1993) is used
to estimate mortality rate ratios for airborne pollutants while adjusting for potential confounding
variables. Relative risk is estimated as the ratio of hazards for an exposed relative to an unexposed

or reference group. The hazard for individual i, A;(t), is modeled as
Ai(t) = Ao(t) exp(X;0 + confounders),

where \o(t) represents the baseline hazard at time ¢, X; is an average long-term exposure, and 3 is
the relative risk parameter. The time axis may be defined as calendar time or age. Stratification
of the baseline hazard function into disjoint groups can relax the proportional hazards assumption
by allowing for separate and not necessarily proportional hazards across strata.

The Harvard Six Cities study and the American Cancer Society (ACS) study (Dockery et al.,
1993; Pope et al., 1995b) are among the largest air pollution prospective cohort studies. In the
Harvard Six Cities study (Dockery et al., 1993) a random sample of 8,111 adults who resided in
one of the six U.S. communities at the time of the enrollment were followed for 14 to 16 years.
An analysis of all-cause mortality revealed an increased risk of death associated with increases in
particulate matter and sulfate air pollution after adjusting for individual-level confounders. Because
of the small number of locations, findings of this study cannot generalized easily.

The ACS study (Pope et al., 1995b) evaluated effects of pollution on mortality using data from a
large cohort drawn from 151 metropolitan areas. Ambient air pollution from these areas was linked
with individual risk factors for 552,138 adult residents. While the ACS study covered a larger
number of areas, the subjects were not randomly sampled as in the Six Cities study. However,
both studies reported similar results — the relative risk of all-cause mortality was 1.26 (95% CI
1.08-1.47) for an 18.6 ug/m3 change in fine particulate matter in the Six Cities study and 1.17
(95% CI 1.09-1.26) for a 24.5 ug/m? change in fine particulate matter in the ACS study. A detailed
reanalysis of these two studies (Krewski et al., 2000) and a new ACS study including data for a
longer period of time (Pope et al., 2002) replicated and extended these results by incorporating a

number of new ecologic covariates and applying several models for spatial autocorrelation.

2.5 Design Comparisons

Ultimately, the choice of an optimal design depends upon the research question and the availability
of data. No single design is best for all applications. Each design targets specific types of effects,
outcomes, and exposure sources. An optimal design should have sufficient power to detect the effect
of exposure; this depends on the variability of exposure and the size of the study.

Table 1 compares and contrasts the four main designs discussed in this section. Time series,
case-crossover, and panel studies are best suited to the study of short-term exposures. Cohort

studies are best suited to the study of medium to long-term exposures. An important distinction
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between the cohort (and longitudinal) studies and the other three designs (ecologic time series,
case-crossover, and panel studies) is their inclusion of long-term (cumulative) exposure variables.

The panel and cohort studies can study events or continuous outcomes. Time series and case-
crossover studies focus on events, and these events should be rare. One key difference between
the time series and the case-crossover designs is the approach to control for seasonality and long-
term time trends. The case-crossover study controls seasonality and trends by design through
restriction of eligible referent samples. In contrast, time series studies use statistical adjustment in
the regression model by including smooth functions of calendar time.

Acute effects can be estimated from panel, time series, and case-crossover studies. These studies
rely exclusively on estimating associations between variation over time in exposure and variation
over time in the outcome. Time scale analyses of time series studies (Zeger et al., 1999; Schwartz,
2000b, 2001; Dominici et al., 2002c) allow estimation of such associations at different time scales:
1 month to 2 months, 1 to 2 weeks, 1 week to 3 days, and less than 3 days.

Cohort studies estimate a combination of acute and chronic effects because the outcomes ac-
cumulate over long time periods and could be triggered by either cumulative or short-term peak
exposures. Thus, although estimation of chronic effects is one goal of cohort studies, these may
not be separable from the acute effects of exposure (Vedal, 1996; Dockery et al., 1993; Pope et al.,
1995b; Krewski et al., 2000). Longitudinal studies use repeat measures over time, so they are better
able to model medium- to long-term effects. Future cohort studies may be able to separate chronic
and acute effects by including both spatially varying chronic exposure metrics and time-dependent
short-term excursions in the regression models.

The effect of exposure may vary across susceptible subpopulations. The case-crossover, panel,
and cohort study designs are better suited to directly assessing effect modification across population
groups than the time series design. The time series design aggregates events over a large population.
Typically individual risk factors or other information about the underlying population at risk are
not available. In contrast, because each case is included individually in the analysis, the remaining
three designs have the advantage of being able to target well-defined subgroups and to more directly
evaluate personal characteristics as exposure effect modifiers.

Restrictions in the type of exposure variable used in a design limit the study interpretation and
the exposure effects that can be estimated. For examples, most air pollution epidemiology studies
rely on ambient monitor measurements of exposure, thus the interpretation of health effects from

these studies is restricted to ambient-source exposure.

3 Methodological Advances in Time Series Studies of Air Pollu-
tion and Health

The estimation and interpretation of an association between air pollution and health presents sev-
eral methodological challenges in addition to the selection of the sampling design and the choice of

the statistical model. In this section we review statistical methods for: 1) combining information
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across several data sources to estimate overall air pollution effects; 2) estimating the health effects
of air pollution taking into account model uncertainties; 3) investigating the consequences of expo-
sure measurement error in the estimation of the health effects of air pollution; and 4) estimating air
pollution-health dose-response curves. These methods are presented by first introducing the sub-
stantive questions, then summarizing the recent statistical developments to address these questions;
and finally discussing the extent that these substantive issues have been addressed. Although we
discuss methods for time series studies, most of these methodological solutions apply to the other

sampling designs as well.

3.1 Combining Information in Multi-Site Time Series Studies

In the past, single-site time series have been criticized because of the un-representativeness of the
study locations and the heterogeneity of the statistical approaches used to estimate the associations
between air pollution and health (Lipfert and Wyzga, 1993; Li and Roth, 1995). These criticisms
have been addressed by using multi-site studies (Katsouyanni et al., 1997; Samet et al., 2000c)
where site-specific data on air pollution and health are assembled under a common framework and
analyzed with an uniform analytic approach. Hierarchical models provide an appropriate approach
for summarizing and integrating the findings of research studies in a particular area (Lindley and
Smith, 1972; Morris and Normand, 1992; Gelman et al., 1995; Carlin and Louis, 1996). Hierarchical
models have been familiar to statisticians for the last four decades, and recently, because of the
development of computational tools that facilitate their implementation (Thomas et al., 1992; Gilks
et al., 1996), they have been applied widely in many disciplines. Recently they have been applied
to analysis of multi-site time series data (Burnett and Krewski, 1994; Katsouyanni et al., 1997;
Roemer et al., 1998; Dominici et al., 2000a; Zanobetti et al., 2000a; Schwartz, 2000a).

Bayesian hierarchical modeling is one appropriate and unified approach for combining evidence
across studies, quantifying the sources of variability, and identifying effect modification (see Do-
minici (2002) for a more detailed discussion about the use of hierarchical models in multi-site time
series studies). For example, we can assume a two-stage hierarchical model with the following struc-
ture: I) Given multiple sites with time series of air pollution and daily mortality /morbidity counts,
the association between air pollution and health is described using a site-specific regression model
(1) which takes into account potential confounding factors such as trend, season, and climate; IT)
The information from multiple sites is combined in a linear regression model where the outcome
variable (3°) is the true relative mortality rate associated with site-specific air pollution indexes
within each site, and the explanatory variables (X7) are site-specific characteristics (population

density, yearly averages of the pollutants and temperature). Formally:

P
B° =g+ Z a; Xj + error. (6)
j=1

If the predictors X7 are centered about their means, the intercept (ap) can be interpreted as the

pooled effect for a site with mean predictors. The regression parameters (a;) measure the change
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in true relative rate of mortality associated with a unit change in the corresponding site-specific
variable.

The sources of variation in the estimation of health effects of air pollution are specified by
the levels of the hierarchical model. The variation of Bs about S° is described by the within-site
variance (v®), which depends on the number of days with available air pollution data, and on the
predictive power of the site-specific regression model. The variation of 8° about ag is described
by the between-site variance (72) which measures the heterogeneity of the true air pollution effects
across cities. The specification of a Bayesian hierarchical model is completed with the selection of
the prior distributions for the parameters at the top level of the hierarchy. If there is no desire
to incorporate prior information into the analysis, then conjugate priors with large variances are
a default choice. However, it is important to complete the Bayesian analysis by investigating the
sensitivity of the substantive findings to the prior distributions.

Posterior distributions of the pooled estimate (y), of the between-site variance (72), and of
the second-stage regression parameters (a;) provide an overall summary of the site-specific relative
rates of mortality, a characterization of the heterogeneity of the air pollution effects across the
several locations, and the identification of site-specific characteristics that modify the association
between air pollution and health. The two-stage hierarchical approach described above can be ex-
tended to include additional levels of the hierarchical models (for example, sites within geographical
regions, geographical regions within nations, etc) which lead to the estimation of additional sources
of variability (within-site, between-site within region, and between regions), and potential effect
modifiers at the site or regional level (see, for example, Dominici et al. (2002a)).

Complex hierarchical models can be fitted using simulation-based methods (Tierney, 1994; Gilks
et al., 1996) which provide samples from the posterior distributions of all parameters. Alternatively,
a point estimate of the pooled effect can be obtained by assuming a random effects model and by
taking a weighted average of the site-specific estimates as, for example, suggested by DerSimonian
and Laird (1986). Under the weighted average approach for a random effects model, the weights
of the site-specific estimates are modified to take into account the variability between locations,
e.g. by including a point estimate of 72. The heterogeneity of the effects across locations is more
completely assessed using a Bayesian approach because inspection of the posterior distribution of
72 provides a better characterization of the degree of heterogeneity of the effects across site than a
point estimate of 72 and/or the classical x? test of 72 = 0.

Dominici et al. (2002a) estimated city-specific, regional and national air pollution effects by
applying a three-stage hierarchical model to the NMMAPS data base. Results are reported for 88
of the largest metropolitan areas in the United States from 1987 to 1994. Figure 1 shows maximum
likelihood estimates and 95% confidence intervals of the log-relative rates of mortality per 10 pug/m3
increase in PMq for each location. These estimates were obtained by fitting the log-linear model
(1) with natural cubic splines to the data for each location independently. The solid squares with
the bold segments denote the posterior means and 95% posterior intervals of the pooled regional

effects. The pooled regional estimates of the PMiy effects varied somewhat across the regions,
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and were estimated to be greatest in the Northeast, with a relative rate of 0.41 % per 10ug/m3
(95% posterior interval 0.04,0.78 ). At the extreme right, marked with a triangle, is displayed the
national averaged relative rate which is equal to 0.21% increase in mortality per 10ug/m? increase
in PMyg (95% posterior interval 0.09,0.33) (Dominici et al., 2002d).

3.2 Model Uncertainties

There are many uncertainties in the choice of the statistical model used to assess associations
between air pollution and mortality. For example, in reanalyses of data from the same city, the
choice of: 1) the meteorological variables to include into the model; 2) the lag structure for the
air pollution variables; and 3) the degree of adjustment for trend and seasonality (e.g. choice of
degrees of freedom and knot locations) has been shown to impact estimates of relative risks (Smith
et al., 2000a; Clyde, 2000; Schwartz, 1994a; Sullivan, 2000; Clyde et al., 2000). As a result, many
authors use data to identify the best single lag or combination of lags for the meteorological and
pollution variables, and to identify the best degree of smoothing to adjust for trend and seasonality.
Recent work, based on a meta-analysis of peer-reviewed literature and simulation studies, shows
that to select the most significant lag among a set of possible lags overstates the chance of finding
a significant association (Smith et al., 2001).

While it is standard practice to report confidence intervals for summarizing uncertainty in
the relative risk estimates once a model has been selected, it is far from routine to acknowledge
uncertainty of model choice. Althought, it is generally accepted that different statistical models
might lead to different conclusions, typically only a “best” final model is presented, giving a false
impression that this is the “only” model suitable for estimating parameters of interest. Ignoring
uncertainty due to model choice can lead to over-confident inferences and predictions (Draper, 1995;
Hodges, 1987).

Bayesian model averaging (BMA) (Draper, 1995; Raftery et al., 1995; Hoeting et al., 1999;
Volinsky et al., 1997; Clyde, 1999, 2000; Chipman et al., 2001) has emerged as an elegant approach
for making inferences that account for uncertainties in model choice and for providing a coherent
method for combining inferences under different models given the same data. BMA can be imple-
mented by using Bayesian hierarchical models. At the first stage, we specify the distribution of the
data given a model and model specific parameters. At the second stage, we elicit the prior distri-
butions for the model specific parameters. At the third stage, we elicit prior probabilities on each
model to take into account of model uncertainity. Posterior distributions for quantities of interest
such as relative risks (A), can be obtained as a weighted average of posterior distributions of the
model specific relative risks p(A|M, data) weighted by the support that each model M received
from the data p(M |data). More specifically:

P(Aldata) = Y p(A|M, data)p(M|data) (7)
M in M
where the sum is over all models under consideration in the space of models M. Because closed-

form expressions for BMA do not exist for generalized linear or additive models (except for normal
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models), methods for implementing BMA for health effect studies have ranged from reversible
jump Markov chain Monte Carlo sampling over parameters and models (Clyde, 1999) to asymp-
totic approximations (Clyde, 2000; Clyde et al., 2000; Sullivan, 2000). The latter approach can
be implemented using standard output from routines commonly used to fit generalized linear or
additive models.

The Bayes Information Criterion (BIC) (Schwarz, 1978) can be used to calculate posterior model
probabilities (Raftery, 1999; Clyde, 2000). BIC is defined as

BIC(M) = deviance(M) + dim(M) log(n), (8)

where the deviance(M) is -2 times the maximized log likelihood, and dim(M) are the number of
parameters under model M. The second term acts as a penalty for adding variables and can be
viewed as a penalized likelihood procedure. Assuming that all models are equally likely a priori,
the posterior probability of model M can be approximated using BIC as

exp (—3BIC(M))
Y min a1 €Xp (—3BIC(m))

where the sum in the denominator is over all models.

p(M|data) = (9)

To illustrate model uncertainty and BMA, we did an analysis of daily non-accidental mortal-
ity for individuals over 65 from Phoenix, AZ. Variables under consideration included orthogonal
polynomials in temperature and specific humidity, coarse PM (PMig - PMy5), fine PM (PMa5)
and 0-3 day lags of each. The temporal trend was modeled using B-splines with unknown degrees
of freedom and knot locations. The model search started by estimating a temporal trend with
approximately 7 knots per year. The maximum likelihood estimate of the linear predictor for the
temporal trend was then treated as an offset in the GLM, and leaps and bounds (Volinsky et al.,
1997) was used to identify the best subsets of the remaining confounding and exposure variables
with different sizes. Each of these models was then re-fit varying the number of degrees of freedom
in the B-spline from 1 to 15 per year to simultaneously estimate all model parameters (additive
and linear terms). The posterior distribution for the degrees of freedom was highly concentrated
on 4 per year, indicating little uncertainty about the level of smoothness for the temporal trend.

Figure 2 shows the top 25 models ranked by posterior model probabilities and associated poste-
rior intervals for relative risks, with the highest posterior probability model at the top. Uncertainty
regarding the variables other than the time trend is illustrated with an image map of the model
space. Each column corresponds to a variable (labeled at the bottom) and each row corresponds
to a model. The uncertainty is represented by differential shading of variables that are included.
This provides a visual representation of model uncertainty regarding the choice of pollution and
meteorological variables, transformations and lags. These 25 models represent 87 % of the total
posterior probabilities across models. Less than half of this is attributed to the highest probability
model, which has a posterior probability of 0.46, indicating substantial model uncertainty.

Model M; can be easily compared to model Ms by using the Bayes Factor (BF) (e.g. the ratio
between the posterior and the prior odds for a specific hypothesis). The log BF is simply the
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difference in BIC values, -.5 (BIC(M;) - BIC(M3)), and if we assume that all models are equally
likely a priori, then the posterior odds for comparing one model to a second depend only on the
BF and not the prior odds.

Log BF for comparing each model to the worst model identified in the search are reported in
the Y-axis for the left hand plot. Differences in the log BF between these models vary from 1 to 4,
and can be used to compare models within the top 25. Based on Jeffreys’ scale of interpretation of
BF (Kass and Raftery, 1995), a log BF of 4 is relatively small and indicates that even the largest
difference between these models is not important. However, the scale also indicates that these
models are much better than the model receiving the lowest posterior probability. While there
is some uncertainty about which lag of PM coarse to include (lag 1 or lag 2), none of the top
twenty-five models include a fine PM effect.

The plot on the right shows the corresponding model-specific 95% posterior intervals for relative
risks associated with a one interquartile range increase for any of the particulate matter variables
included in the model (a 17.9 pg/m? and 9.1 ug/m? increase for coarse and fine PM, respectively)
obtained using a normal approximation for the log relative risk centered at the maximum likelihood
estimate and with variance based on the inverse Fisher information. For models in the top 25 that
did not include any particulate matter variables, the posterior distribution of the relative risk is
degenerate at one. Using BMA, the posterior mean of the relative risk associated with a one
interquartile change in fine and coarse particles is 1.028 (95% posterior interval = 1,1.045). Note
that BMA reports higher uncertainty in the estimated air pollution effect than the one reported
under the highest probability model (95% posterior interval 1.014 to 1.047).

BMA is a suitable approach for taking into account model uncertainity and has great potential
in air pollution studies where model choice is critical. Unlike p-values, posterior model probabilities
can be used to quantify the evidence in favor of an air pollution effect, taking into account model
selection. Using all models from the search, the probability that there is no PM effect (the relative
risk equals one) can be obtained by summing the posterior model probabilities over all models that
do not include any PM variables. For this example, the posterior probability of no effect is 0.0522,
which corresponds to posterior odds that the relative risk is not 1 of roughly 18 to 1.

However, standard epidemiological modelling often involves first selecting confounding variables,
and then including exposure variables after adjustment for confounders. This is a critical step in
air pollution studies where the air pollution effect on health is much smaller than the effects of the
other time varying covariates (such as weather, and trend). In this situation, because BMA treats
exposure and confounders symmetrically, it is likely to ascribe the potential air pollution effects to
other correlated confounders.

To date model averaging has only been explored in single city analyses. In multi-site time series
studies, BMA provides more accurate estimates of within city-pollutant effects. The distributions
of quantities of interest can then be averaged over models within cities, and the pooled across cities

within region, and over regions.
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3.3 Effects of Misclassification of Exposure

One barrier in interpreting the observational evidence concerning the adverse health effects of air
pollution is the measurement error inherent in estimates of exposure based on ambient pollutant
monitors. Exposure assessment studies have shown that data from monitors at central sites do not
adequately represent personal exposure (Lioy et al., 1990; Mage and Buckley, 1995; Janssen et al.,
1997, 1998; Ozkaynak et al., 1996; Haran et al., 2002). Thus, the exposure error resulting from
using centrally measured data as a surrogate for personal exposure can potentially lead to bias in
estimates of the health effects of air pollution (Thomas et al., 1993). However, because regulations
are based on ambient air and most epidemiologic studies rely on exposure measurements from
central site monitors, health effects from ambient exposures are the target of many epidemiologic
studies, regardless of their intent.

Both ambient and personal air pollutant exposures vary over time. In addition personal ex-
posures vary significantly over individuals. The micro-environments where individuals spend their
time have different dominant sources and all contribute additively to total personal exposure.
Micro-environmental modeling is a popular approach for exposure modeling, particularly when
direct measurement of total personal exposure is not possible (Duan, 1991; Rodes et al., 2001).

Individual personal exposure can be partitioned into to ambient versus non-ambient sources, of
which personal exposure to ambient sources is of interest from a regulatory perspective. A simple

model for total personal exposure for individual ¢ at time ¢, XZ-IZ , has the form
XF = XN + apXj}

where XY is personal exposure from non-ambient sources, Xftl is the ambient concentration at
individual #’s spatial location, and «;; is an attenuation parameter defined as the fraction of ambient
concentration experienced as exposure (Ott et al., 2000; Wilson et al., 2000; Sheppard and Damian,
2000). The attenuation parameter depends upon the penetration, deposition and decay rates for a
specific pollutant and micro-environment, as well as on individual behavior (particularly how much
time is spent outdoors).

Current research suggests that for large populations it may be reasonable to assume that a;; = «,
X;;1 o XtA, and that the ambient and non-ambient sources are independent. This has important
consequences for study design, particularly since most studies rely on a measurement )?{4 of XtA
from a fixed-site ambient monitor.

In considering the consequences for estimating health effects of air pollution by using surrogate
measures of exposures, one approach (Zeger et al., 2000) begins by decomposing the pollution

measurement difference between X} and X7 into three components:
Xf; = X+ (X = X7) + (X = X + (! = X (10)

where, (X thD —X[) is the error due to having aggregated rather than individual exposure data; (X{ —
X7) is the difference between the average personal exposure and the true ambient pollutant level;

and (X —)?tA) represents the difference between the true and the measured ambient concentration.
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Regardless of the epidemiological design, each of these differences may introduce some degree of
exposure measurement error.

For example, in an ecological time series study of air pollution and health, suppose that we
are interested in drawing inferences about the relationship between Y; and X/} given substantial
information about the relationship between Y; and f{‘ at a particular site, and separate studies of
the association between )/(:54 and X}. Here we assume )/(:54 = X{!. In this scenario, a reasonable

approach is to build a two-stage model where at the first stage we assume:
E[Y;] = exp(X[ Bp + confounders) (11)

where Bp is the log relative rate of death associated with a unit change in average personal exposure,
X} is a missing covariate, and the confounders are the same as in model (1). At the second stage
we assume a measurement error model for the relationship of average personal exposures and
ambient concentrations, taking account of variations within and across locations. This modelling
approach combines a log-linear model for Y; given X/ with measurement error model for X/ given
X/ to make inference about Bp. As discussed below, the direct regression of ¥; on X/ giving
B is also of interest from a regulatory perspective as only ambient concentrations are currently
regulated. This modelling approach (Dominici et al., 2000b) can be described as a combination of
Bayesian hierarchical modeling (Lindley and Smith, 1972; Morris and Normand, 1992) and data
augmentation (Tanner, 1991), and is an example of regression calibration which is widely used
for handling measurement error in non-linear models (Carroll et al., 1995). Recently, alternative
statistical models have been developed (Clayton, 1991; Thomas et al., 1993; Richardson and Gilks,
1993; Zidek et al., 1996; Cakmak et al., 1999; Fung and Krewski, 1999; Dominici et al., 2000b;
Zeger et al., 2000; Sheppard and Damian, 2000) that can be used to describe the relationship of a
health outcome with air pollution exposure using surrogate measurements of exposure.

Figure 3 shows the posterior distributions of log relative rates (% increase in mortality for 10
pg/m? increase of P My exposure) of mortality from ambient exposures 3, and from total personal
exposure Sp. Note that measurement error tends to bias the results towards zero and that the
IQR of Bp is larger than the IQR of 8. This is because we have taken into account the variability
due to having X7, not X7

Relative rate of mortality corresponding to short-time scales of PM7y exposure might be at-
tenuated more by misclassification of exposure than the relative rate of mortality corresponding to
longer-time scales. To further investigate this issue, we reanalyzed data from Particle Total Expo-
sure Assessment Methodology Study (PTEAM) Ozkaynak et al. (1996) where personal and ambient
PM; exposure measurements were recorded for 48 consecutive days (September 22-November 9,
1990) in Riverside, California.

To account for the scale-varying association between ambient and personal concentrations,

we can extend the measurement error modeling approach to incorporate a time-scale dependent
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measurement error model. More specifically, we consider the following model:

logpur = Z XL BE + confounders (12)
k
XE = oap+ounXi+N0,02), k=1,...,K (13)

where: X ,Z is the average personal exposure at day ¢ at time scale k, and 5,5 measures the percentage
increase in mortality per 10 ug/m? increase in the average personal pollution level at time scale k.
The slopes as measure the changes in the personal exposure for unit change in the shorter, medium,
and longer time scale variations of the ambient concentrations. The intercept o represents the
remaining portion of personal exposure to particles unexplained by the ambient concentrations,
that arise from personal activities or unmeasured micro-environments not well-represented by fixed
indoor or outdoor monitors, at time scale k. Under this modeling approach, the estimate of ﬁ,f
has the simple form B,f = Bk /a1, and its standard deviation approximately equals the standard
deviation of Bk times 1/ayx. This is the well-known regression calibration Carroll et al. (1995)
approach to adjust for exposure measurement error.

We applied this strategy to estimate the slopes (a1xs) by using the PTEAM data. Results
are showed in the Table 2. As expected, the association between average personal exposures
and ambient concentrations is stronger at the longer time scales than at the shorter time scales.
Therefore, the time-scale coefficient at the long time scales is affected less by the measurement
error.

In summary, regardless of the sampling design, studies of air pollution and health are subject to
the limitations posed by the available air pollution measurements. Various aspects of the air pol-
lution exposure measurements, such as the three exposure components described in equation (10),
and time scales of variation in ambient and personal exposure described in equation (12), produce
different types of bias in the health effect estimates, and such biases are more or less important in
the various sampling designs. Furthermore, rexamination of simplified assumptions will be needed
as better understanding of exposure measurement distributions develops. A systematic treatment
of exposure measurement error and modelling issues for different sampling designs, including rec-

ommended data collection and novel statistical methods, is still lacking in the literature.

3.4 Shape of the Exposure Response Curve

One approach for estimation of a dose-response curve in time series studies is to model the logarithm
of the expected value of daily mortality as a smooth function of air pollution after adjusting for
other confounders:

E(Y:) = exp{S (X}, knots = v) + confounders} (14)

where S(-,-) is modeled as a natural cubic spline with & knots at locations v = (v1,...,1%), and
the term confounders includes smooth functions of time, and temperature, as described in model

(1). The number and locations of knots are generally fixed in advance as in Daniels et al. (2000) in
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the analysis of the 20 largest US cities, or can be estimated from the data using Reversible Jump
Monte Carlo Markov Chain (RJMCM) (Green, 1995), as in Dominici et al. (2002a) in an analysis
of the 88 largest US cities. Other methods can be used as an alternative to the natural cubic spline,
such as smoothing splines, loess or B-splines (Smith et al., 2000b; Schwartz, 2000a; Schwartz and
Zanobetti, 2000). Shapes of dose-response curves are generally not very sensitive to the smoothing
method (except at extremes), but can be sensitive to the number of knots or smoothness penalty.
For a fixed number of knots, the dose-response model (14) can be expressed as a parametric

model
E(Y;) = exp{BB; + confounders} (15)

where By is the ¢-row of the design matrix for the natural cubic spline with knots at locations v of
X and B is the corresponding vector of coefficients.
To examine the question of whether the health effects of air pollution are negligible below some

level, a linear threshold model can be used:
E(Y;) = exp{#(X;_¢ — h)* + confounders} (16)

where the X;_, term in model (1) is replaced with a term of the form (X;_y, — h)*, where (z7 =z
ifz>0and zT =0 if x < 0) and h is an unknown change-point that is estimated from the data.
Bayesian methods can be used to estimate marginal posterior distribution of the location of the
threshold A (Cakmak et al., 1999; Smith et al., 2000b; Daniels et al., 2000; Schwartz, 2000a). The
parameters 8 in the generalized additive model (1) and # in model (16) have different interpreta-
tions: B measures the percentage increase in mortality per unit increase in air pollution at any level
of the pollutant; # measures the percentage increase in mortality per unit increase in air pollution
when the pollutant level is higher than h. For pollutants value smaller than h, the log relative rate
B is set to zero.

In multi-site time series studies, it is of interest to estimate a pooled dose-response relationship
by combining dose-response curves across locations. The hierarchical approach described earlier

can be used here, where equation (6) is generalized to the multivariate case as
B* =ag+ N(0,%) (17)

where 8° and aq are the city-specific and the overall vectors of the spline coefficients, respectively.
Effect modification of the shape of the dose-response curve can be also investigated by including
city-specific covariates in equation (17).

Dominici et al. (2002a) recently used the hierarchical spline model defined in equations (15) and
(17) with an unknown number and locations of knots to estimate regional and national exposure-
response relationships in the NMMAPS data base (Samet et al., 2000c). Figure 4 shows regional
P Mp-mortality dose-response curves for each region in bold solid lines. The curves with empty
dots were estimated using a simplified version of the Reversible Jump Monte Carlo Markov Chain
(RIMCMOC) algorithm with one fixed knot at 40ug/m?. At the bottom right are the national dose-

response curves. The bold line represents the estimated national dose-response curve, allowing for
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unknown numbers and locations of knots, obtained by pooling information across the 88 cities.
This national curve, represented by the empty dots, overlaps with the national curve estimated by
using RJIMCMC. The hierarchical spline and linear models can be compared easily, because the
linear model is a special case of the spline model with 0 knots.

The national dose-response curve, obtained by combining information across all the cities, is
clearly linear, and the posterior probability of zero knots from the RIMCMC is almost 1. At the
regional level, the data from cities in several regions (Northwest, Upper Midwest, and Southeast)
indicate some modest departure from a linear model. In particular, the Northwest and Upper
Midwest regions show a leveling off (saturation effect) at higher levels of PM. However, the un-
certainty boundaries for these regions indicate compatibility of the data with a linear relationship,
and we currently have no specific hypotheses as to why these regions might deviate from a linear
dose-response curve.

These findings are consistent with previous analyses of time series data in a number of locations
including London, Cincinnati, Birmingham, Utah Valley, and Shenyang (Pope, 2000), and with
findings of the two major long-term studies, the Harvard Six-Cities and the American Cancer
Society cohort studies (Dockery et al., 1993; Pope et al., 1995b). The consistent finding of a
linear relationship, now confirmed at the national level, places a difficult burden on policy-makers,
charged by the Clean Air Act with setting protective standards for public health that include a
margin of safety. However, such linearity might also reflect averaging out nonlinearities at the
region, and at the city levels, and at susceptible subgroups of the populations (e.g. elderly or
those with pre-existing diseases). At the other end, substantial statistical power would be needed
to provide strong evidence of nonlinearity in concentration-response relationship for very specific
strata of geographical and populations subgroups.

These methods provide evidence in a form that would be directly applicable to policy-development,
as shown by our finding that the concentration-response relationship for air pollution and mortality
is linear with a high degree of certainty. With repeated application, our methods would offer an ap-
proach for tracking the health effects of air pollution over time as control measures are implemented;

they should have application to other environmental health problems as well.

4 Discussion and Research Opportunities

Risk assessment in environmental epidemiology is challenged by the complexity of the human
exposure to environmental agents and by the difficulty of accurately measuring exposure. Large
populations are exposed at very low air pollution levels, and in order to detect small relative risks,
high statistical power is necessary. Environmental agents vary in characteristics and concentrations
over time and across space, they tend to be highly autocorrelated, and they are usually measured
imprecisely. Both environmental agents and health outcomes are typically measured at different
levels of temporal and spatial resolution.

These statistical issues are central to the goal of determining the health effects of chronic and
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acute exposures to particulate matter and other air pollutants. Although several state-of-the-art
statistical approaches for the analyses of environmental data have been proposed, considerable need
remains for further methodological development that would support more effective risk analysis.

Research opportunities that relate to development or enhancement of methods are discussed below.

Generalized Additive Models for analyses of time series studies in air pollution and
health. In time series studies of air pollution and mortality, GAM has been the most widely
applied method because it allows for non-parametric adjustments for non-linear confounding effects
of seasonality, trends, and weather variables (Schwartz, 1994b; Kelsall et al., 1997; Samet et al.,
2000a; Dominici et al., 2000a; Katsouyanni et al., 1997; Moolgavkar, 2002).

Recent work by Dominici et al. (2002b) and by Ramsay et al. (2002) called for caution in
the use of GAM for estimating relative rates of mortality/ morbidity in time series studies of air
pollution and health. Dominici et al. (2002b) reported that when the data to which the GAM are
applied have the following two characteristics: 1) the estimated regression coefficients are small;
and 2) there exist confounding factors that are modeled using at least two non-parametric smooth
functions, the defaults in the S-PLUS software (Version 3.4) package gam do not assure convergence
of its iterative estimation procedure, and can provide biased estimates of the regression coefficients
and standard errors.

This phenomenon is likely to occurr in time series analyses of contemporary data on air pol-
lution and mortality. To evaluate the impact of default implementation of the gam software and
understimation of standard errors on published NMMAPS analyses, the NMMAPS data has been
reanalyzed with three different methods: 1) Generalized Linear Models with natural cubic splines;
2) GAM with default convergence parameters; and 3) GAM with more stringent convergence pa-
rameters than the defaults. In the re-analyses, the pooled estimate across 90 cities at lag 1 moves
from 0.41% (posterior standard error 0.05%) percent increase in total mortality for 10 unit increase
in PMj to 0.27% (posterior standard error 0.05) when more stringent parameters in the GAM are
used. When GLM with natural cubic splines are used, then the pooled estimate is 0.21% (posterior
standard error 0.06). In every analysis, however, there is a strong evidence for a positive associ-
ation of acute exposure to PMiy and death, even with very conservative adjustments for trend,
seasonality and weather (Dominici et al., 2002d).

In parallel, Ramsay et al. (2002) reported that inability of the GAM to detect concurvity
can lead to under-estimation of the standard error of relative rate estimates (see also Chambers
and Hastie (1992) pages 303-304). The NMMAPS re-analyses Dominici et al. (2002d) empirically
confirm theoretical results of Ramsay et al. (2002), and show that the degree of bias in the standard
errors is proportional to the size of the standard errors, and that this underestimation remains even
when more stringent convergence parameters are used.

In summary, although simulation studies for NMMAPS showed that Generalized Linear Models
with natural cubic splines provide a less biased estimate of the pooled relative rate, than GAM

with smoothing splines (Dominici et al., 2002b) additional statistical investigations are required be-
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fore making recomandation on which of the two methods should be used. These recent discoveries
have generated substantial costernation among environmental scientist, EPA members and policy
makers. Sources of model uncertainty call for a systematic assessment of model choice and for
development of new methods. Importantly, the weight given by this scientific evidence in setting
policy requires a level of confidence in findings that is difficult to attain in the small effects/many

potential confounders context, regardless of the sophistication of the statistical approach.

Misaligned data. Data on environmental pollutants and health outcomes are typically mea-
sured at different scales of temporal and spatial resolution. For example in time series studies
hourly, daily, 3-day, and 6-day air pollution data are recorded from a limited number of monitor-
ing stations, whereas daily health outcomes are typically aggregated over large spatial areas. To
analyze misaligned data, a pragmatic modeling strategy is to convert both health outcomes and
environmental data to common spatial and temporal resolutions. For example, the environmental
pollutants can be aligned with the outcome data by calculating 24-hour averages and aggregating
these measurements across monitoring stations.

Recently novel statistical approaches have been proposed to estimate associations between en-
vironmental exposures and disease from epidemiological data collected at different levels of spatial
aggregation (Carlin and Mugglin, 1997; Mugglin and Carlin, 1998; Mugglin et al., 1998; Gelfand
et al., 2001). For example, Gelfand et al. (2001) proposed a hierarchical modelling approach for es-
timating associations between point-level ozone measurements and zip-code level pediatric asthma
ER visits. Best et al. (2000) developed hierarchical Poisson-Gamma models to handle misaligned
data by relating spatial variables to an underlying continuous random field. When such data are
available, these models can accommodate individual characteristics, such as age and gender.

Because of the opportunities arising from the increasing availability of large, complex data
bases on exposure and disease at different temporal and spatial scales, new statistical methods are
needed to estimate health effects of exposure to environmental agents which appropriately take into
account: 1) spatially varying individual exposures and risk factors within areas; 2) spatially varying
outcomes and population risk factors between geographical areas; and 3) exposure measurement
error. Neglecting any of these may induce bias in the health effect estimates.

Opportunities for aligning data can also come from combining data from different sampling
designs. For instance, time series studies rely upon day-to-day variations in pollution within a
population, and they estimate the health risk associated with shorter-term exposures, on the order
of days, weeks or at most months. In contrast, cohort studies rely upon site-to-site variations of
cumulative pollution exposures and estimate the health risk associated with long-term exposures.

Time series studies and cohort studies provide different numerical estimates of the relative risks
associated with exposure to air pollution. More specifically, relative rate estimates from cohort
studies are an order of magnitude larger than relative rates estimates from time series studies, and
a direct comparison between these two relative rates has not been possible because time series and

cohort estimates have been obtained from different populations, and from different exposures.
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Recently, there are been attempts to reconcile differences in time series and cohort studies by
estimating “sub-chronic effects” in time series studies from distributed lag (Zanobetti et al., 2000b;
Braga et al., 2001) or time-scale models (Schwartz, 2001; Dominici et al., 2002c). For example,
Zeger et al. (2002) estimated sub-chronic effects in 4 NMMAPS locations by using averages of past
exposure to PMj, as predictors. However, when several days in the past are used to calculate the
averages (say mor than two weeks), then the health effects associated with such slowly varying air
pollution exposures are highly confounded by the other slowly varying covariates.

A promising research opportunity would be to merge cohort and time series national data bases,
and to develop statistical methods to jointly estimate acute and chronic effects of air pollution on

the same population.

Exposure assessment and study design. Environmental exposures typically affect large popu-
lations at very low levels. Such low exposures induce very small health risks which, in turn, require
huge sample sizes to be detected. Exposure characteristics, both underlying and due to measure-
ment, can have a large impact on the health effect estimates. Limited or inaccurate exposure data
is the norm in environmental epidemiology, and it induces large measurement error making even
more difficult to properly estimate such small risks. Integrating exposure assessment with study
design can enable scientists to detect small effects that would otherwise be undetectable; strengthen
the interpretation of the effects to be estimated, and facilitate recommendations for more targeted
exposure assessment studies.

The time series design is an excellent example of integration between exposure assessment and
study design. The success of time series studies in detecting small effects may be due to the for-
tuitous opportunity to combine reasonably representative time series of population exposure with
time series of rare events derived from huge populations. In the case of particulate matter, the
assumption of reasonably accurate population exposure assessment follows from both the charac-
teristics of population exposure, and the current ambient monitoring program. Ambient particulate
matter concentrations are much more variable in time than space (Goswami et al., 2002). Although
time-varying ambient concentration of particulate matter is only a small fraction of the variation
of total personal exposure, ambient measurements may be a good surrogate for average population
exposure. In time series studies, because ambient and non-ambient sources for particulate matter
are likely to be independent (Ott et al., 2000), ignoring non-ambient source may not induce bias.

An alternate perspective on time series studies would argue the estimates are inherently flawed.
For instance, several of the exposure assumptions could be wrong. Further, failure to recognize the
importance of spatial variation of ambient particulate matter and the effects of aggregation in these
studies may lead to the ecological fallacy where characteristics of individuals are wrongly inferred
from characteristics of groups (Greenland and Morgenstern, 1989; Richardson, 2000; Greenland,
1992; Sheppard et al., 1996; Wakefield and Salway, 2001; Morgenstern and Thomas, 1993; Sheppard,
2002a).

A better temporal and spatial resolution can be achieved with alternative designs, such as per-
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sonal exposure panel studies on individuals. However, most alternative studies require unrealistic
exposure-assessment effort and unaffordable sample sizes. This highlights the inter-relationship

between feasibility, study design, and exposure assessment.

Measurement Error in Monitoring Data. In addition to biases from using central site moni-
tors to represent personal exposure, measurement error in central site monitoring data has received
little attention. Recent work by McBride et al. (2002) has examined biases in measured PM concen-
trations based on monitor type: Federal Reference Method (FRM) monitors, FRM-equivalent mon-
itors, and monitor-inlet type for co-located monitors in Phoenix, AZ. Although the FRM-monitor
is more accurate and precise, measurements are taken every third day, while the FRM-equivalent
monitor provides daily observations. Daily concentrations from the FRM-equivalent-monitor ex-
ceeded those of the FRM-monitor by roughly 40% (95% posterior probability interval: 1.20,1.61)
for the period prior to the inlet change in the FRM-equivalent monitor. After the inlet change
the direction of bias reversed with daily concentrations of the reference monitor exceeding those
of the FRM-equivalent monitor by roughly 50% (95% posterior probability interval: 0.56,0.78).
Moreover, the probability of 1:1 agreement between the two monitors during either the pre- or
post-inlet periods is very close to zero. Even though the FRM-equivalent-monitor has better tem-
poral resolution with fewer missing observations, the use of unadjusted measurements could lead

to substantial biases (in either direction) or lead to non-significant effects in health effect studies.

Multiple pollutant models. Because EPA regulates each criteria pollutant independently, most
of the current research on air pollution and health outcomes focuses on estimating health effects
of a specific pollutant. Identification of the unique effect of a specific pollutant requires careful
adjustment for simultaneous exposure to a complex mixture of co-pollutants.

Given the observational nature of studies on health effects of air pollution, disentangling the
effects of one pollutant from others is difficult because of correlation among the pollution variables.
In addition, interpretation of individual coefficients separately from multi-pollutant models can
be problematic, since multi-collinearity can alter parameter estimates, e.g. some coefficients may
be negative because of positive correlation between pollutants. In addition very limited data is
currently available on particulate matter composition to better characterize the risk.

Multi site analyses provide a more sound approach for exploring confounding and effect modifi-
cation to other pollutants and weather. Pooling of city-specific relative rates from multiple pollutant
models can be performed in an univariate or multivariate fashion. In an univariate fashion, city-
specific coefficients for each pollutant are pooled separately using fixed effects, random effects, or
Bayesian models. However univariate pooling ignores within-city statistical correlation between
relative rates estimates for the pollutants jointly included in the model. Because of this limitation,
multivariate pooling — which instead takes into account of such correlation — is more suitable in
multipollutant analyses. Multivariate pooling can be easily performed by using Bayesian two-stage
multivariate normal models (Lindley and Smith, 1972) and implemented by the software TLNISE
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(Everson and Morris, 2000) which allow specification of non-informative priors on the heterogeneity
covariance matrix.

Alternatively, it might be more reasonable to assume that there exists a mixture of pollutants
that can be considered harmful. While individual effects may not be estimated reliably, combined
effects can be. This is one of the priority research topics identified by the National Research Council
(1998). However, in calculating the health effect for simultaneous increases in several pollutants, it
is not clear how to determine these simultaneous changes. While a one interquartile range change
is often used (Sheppard et al., 1999; Yu et al., 2000; Clyde et al., 2000), this is an arbitrary choice.
In addition, an interquartile range change it is not necessarily consistent with what would happen
to one pollutant if a second pollutant changed or if a latent variable that affects both pollutants
were modified. In general one would need a joint probability model for the multiple pollutants to
address the issue of how much to change each pollutant when estimating the air pollution effect.
This requires a better understanding of sources, the dynamics of secondary aerosol formation,
weather, and interventions.

Inferences in multipollutant models is further complicated by the presence of exposure mea-
surement error in the pollutant variables (Zidek et al., 1996; Zeger et al., 2000). One important
limitation of most published measurement error formulations is that only a single pollutant, gen-
erally PM, is considered. Work is needed to extend these models to multiple pollutants — for
example, PMyy, PMs5, NO2, SOz, and CO, combustion by products, and PM mass speciated
data.

Harmful PM constituents. Although many epidemiological studies have found consistent evi-
dence of effects of particulate matter on health, a research priority is identifying which component(s)
of particulate matter are actually responsible for these adverse health effects (National Research
Council, 1998).

One approach to this problem is to use multi-site time series studies to investigate whether
between-location differences in particle composition explain the heterogeneity of the relative rates
of mortality across cities (Samet et al., 2000c,b; Katsouyanni et al., 1997; Dominici et al., 2002a).

An alternate approach is to use speciated PM time series. Speciated data are starting to be-
come available for a few locations, but they are not measured in a systematic fashion yet. Source
apportionment models apportion time series of multiple pollutants and/or chemical species into
multple sources. Common approaches to source apportionment are principal components anlysis
(Henry, 1987), mass balance equations (Miller et al., 1972; Watson et al., 1984), and positive ma-
trix factorization (Paatero, 1997; Ramadan et al., 2000). Regardless of the approach, the source
estimates are uncertain and subject to measurement error. Work is needed to directly link the

source apportionment models with health effect estimates in the time series regression models.

Mortality Displacement. Even if the associations between particulate air concentrations and

mortality are causal, it is still important to know who is affected: if only those very near death are
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susceptible then the public health importance of particulate air pollution might still be fairly small.
Short-term mortality displacement implies a model where a pool of frail, near-death individuals
is created and maintained by the effects of other diseases such as pneumonia or congestive heart
failure. These individuals have a very short life expectancy, and the effect of high air pollution is
to hasten their deaths by a matter of days. This depletes the pool of frail individuals, so the higher
mortality immediately following a day of high air pollution is followed by lower mortality for the
next few days. Fundamental to this model is the assumption that particulate air pollution does
not affect the rate at which people enter the frail pool.

Several statistical approaches have been developed to investigate short-term mortality displace-
ment. Poisson regression methods in the frequency domain (Kelsall et al., 1999; Zeger et al., 1999;
Schwartz, 2001) and in the time domain (Schwartz, 2001; Dominici et al., 2002c) estimate asso-
ciations between air pollution mortality at different time-scales of variation in the exposure and
outcome. These approaches can be used to test the mortality displacement hypothesis: if the as-
sociation between air pollution and mortality is evident at “only” the shortest time-scales, then
pollution-related deaths are advanced by only few days and therefore support mortality displace-
ment.

Findings from recent time-scale analyses are inconsistent with the hypotheses of short-term
mortality displacement (Zeger et al., 1999; Schwartz, 2001). In fact, they suggest that smoother
variations in the air pollution time series (14 days to 3 days) tend to be more strongly associated
with mortality than less smooth variations (less than 2 days).

Although innovative, frequency domain and time scale approaches have limitations and their
findings need to be interpreted with caution. Relative rates of mortality associated with long-time
scales variations in air pollution (say larger than 2 months) tend to be heavily confounded by
seasonality, and interpretation of the time-scale relative rates is not straighforward. Distributed
lag models (Zanobetti et al., 2000b) are reasonable alternatives and allow a better interpretation
of the coeflicients, but are still affected by the long-term confounding.

Alternative state-space models that attempt to capture the rates of transition into near-death
and death (Nelson and Murray, 2000) have suggested that most of the mortality does occur in those
very near death. Findings from different studies and statistical approaches need to be reconcilied.

Spatial confounding in chronic studies. As detailed in the subsection 2.4, cohort studies
(Dockery et al., 1993; Pope et al., 1995b, 2002) compare air pollution-mortality associations across
geographical sites rather than day-to-day variations in air pollution and mortality within one site,
as done in time series studies. Chronic studies have reported that persons living in more polluted
cities have higher mortality risks than “otherwise similar” persons in less polluted cities. Here,
“otherwise similar” refers to statistical control for age, gender, socio-economic factors, smoking
and additional person-level confounding variables.

When spatial dependence between health outcomes and exposures is due to unmeasured spa-

tially varying confounders, then bias in the health effect estimates can occurr. In addition, when
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spatial variation in the health outcomes and exposures are on the same scale and it is not due
to confounding, then lack of adjustment for the spatial dependence reduces the efficiency of the
health effect estimate (Guthrie et al., 2002). Re-analyses of the ACS data includes modeling of spa-
tial dependence and indicates the possiblity of residual spatial confounding (Krewski et al., 2000).
However, later analysis of these data with longer follow-up indicated no residual spatial structure
(Pope et al., 2002).

Air pollution cohort studies generally use ambient community-level measure of cumulative air
pollution exposure. This approach has merit when most of the exposure variation is between com-
munities but is limited when most of the exposure variation is within communities (Sheppard and
Prentice, 1995; Greenland, 1992; Wakefield and Salway, 2001). However, innovative work on model-
ing within-community variation in long-term ambient exposure as a function of local traffic sources
and residence location is increasing the capability of these studies to capture additional exposure
information (Briggs et al., 1997; Lebret et al., 2000; Hoek et al., 2001).
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Table 2: Results of the measurement error analysis. Gy, is the estimated change in the personal exposure for
unit change in the k-th time scale variation of the ambient concentrations, By is the percentage increase in
total mortality per 10 ug/m?® increase in the ambient pollution level at time scale k, and /3’,’; is the percentage
increase in total mortality per 10 pg/m® increase in the average personal pollution level at time scale k.
Numbers between () are the 95% confidence intervals.

time-scale ay, Br BE
<21 0.83(0.73,0.93) 0.55(0.20,0.91) 0.66(—0.19,1.51)
10 |0.53(0.43,0.53) | 0.54(0.24,0.84) | 1.01(0.41,1.61)
( ) (
( ) (

5 0.52(0.34,0.70) | 0.27(0.01,0.56) | 0.52(—0.03,1.07)
<35 |0.42(0.07,0.75) | —0.01(—0.33,0.32) | —0.02(=0.67,0.63)
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Figure 1: Mazimum likelihood estimates and 95% confidence intervals of the log-relative rates of mortality
per 10ug/m? increase in P Mg for each location. The solid circles with the bold segments denote the posterior
means and 95% posterior intervals of the pooled regional effects. At the bottom, marked with a triangle are
the overall effects for PMiq for all the cities. These results are obtained by using generalized linear models
with natural cubic splines, and also reported in the HEI Re-analyses Report (Dominici et al. 2000b).
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Figure 2: Top 25 models and associated 95 % probability intervals for the relative risk associated

with a one interquartile range increase in particulate matter for Phoenix, AZ. In the left plot

of the model space, rows correspond to models and columns to variables, with white rectangles

indicating that the variable for that column is included in the model corresponding to that row.

The particulate matter variables (coarse, fine, and lags of each) are in the last 8 columns.
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Figure 3: Comparison between the log relative rates (% increase in mortality for 10 py/ m3increase
of PMyy exposure), obtained by fitting the generalized additive model having as predictors the am-
bient concentrations and the average personal erposures, respectively. The boxplots represents the

posterior distributions of the two log relative rates (8, By)-
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Figure 4: Regional and national PMiq-mortality dose response curves. Solid black curves are obtained by
fitting the spline model with the RIMCMC and allowing for an unknown number and location of knots. The
curves with the empty dots are obtained by setting one knot at 40u,/m> and fitting the spline model with a
Gibbs sampler. The linear curves are obtained by fitting the hierarchical linear model with a Gibbs sampler
without borrowing strength across regions. The shaded area denotes the 95% confidence bands for the curve

with o fixed knot. These results are obtained by using generalized linear models with natural cubic splines.



