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Bayes'’ Theorem

P(A|H;)P(H,)

PUH | A) = S5 m) p,)

The posterior probability of H; given A is proportional
to the product of the prior probability of H; and the
likelihood of A when H; is true

Suppose we are interested in two particular hypotheses

H; and H ;. The posterior ratio is given by:
i J

P(Hi|A) _ P(A|H;)
P(H;|A) — P(A|H;)

P(H,)
P(Hj)

X

that is, by the product of the prior odds and the
likelihood ratio.

Bayesian Inference

The Rev. Thomas Bayes published in the 1763 a paper
entitled “An essay towards solving a problem in the doc-
trine of chances”. This paper introduced the concept of

inverse probability.
o Hy,..., H; set of hypotheses
e P(H;), i =1,...,k prior probabilities,
> P(H;) =1
e P(A| H;), i=1,...,k likelihoods of the data A

Example: use of the relative frequencies

e There were 12 games with point spreads of 8 points;

the outcomes in those games were:
-7,-5,-3,-3,1,6,7,13, 15,16, 20, 21

with positive value indicating wins by the favorite and
negative values indicating wins by the underdog

e P(favorite wins | point spread = 8) = %
e P(fav.wins by at least 8 | p. spread = 8) = 157

e P(fav.wins by at least 8 | p. spread =8&fav. wins) =
77



Medical diagnosis

e a patient may belong to state Hy (presence of disease)

or Hy (absence of disease)

e P(H;) is the prevalence rate of the disease in the

population to which the patient is assumed to belong

e information: D = T (presence of disease), or D = T

absence of disease

e P(T | Hy), P(T€ | Hy) are the true positive and the

true negative rates of the clinical test

e Bayes theorem enables us to understand the manner
in which these characteristics of the test combine with
the prevalence rate to produce varying degrees of di-

agnostic discrimination power.
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e as a single, overall measure of the discriminatory power
of the test, one may consider the difference
P(H\ | T)— P(H. | T

e in cases where P(H) has very low or very high val-
ues (large pop. screening or following an individual
patient referred on the basis of suspected coronary
disease) then there is limited diagnostic value in the

test

e if there is a considerably uncertainty about the pres-
ence of coronary disease, .25 < P(Hp) < .75, the
test may be expected to provide valuable diagnostic

information.

Medical diagnosis (cont)

e goal: assessment of the diagnostic value of scientig-

raphy, as an indicator of coronary artery disease

e controlled experiment concluded that P(T" | Hy) =
.9 and P(T°¢ | Hy) = .875 were reasonable order
of magnitude for the sensitivity and specificity of the

test.

P(D|H,)P(H,)
(D|H1)P(H1)+P(D|H2)P(H2)

« P(H; | D) = 1

Subjective probability

e to assign probability distributions to parameter like
f, may not be consistent with the usual long-term

frequency notion of probability. Let
e O =true prob. of success for a new surgical procedure

e here it is possible to think of 6 as the limiting value
of the observed success rate as the procedure is inde-

pendently repeated again and again
e O =true proportion of US men who are HIV-positive

e the long-term frequency notion does not apply, the
randomness of 6 does not arise from any real world

mechanism.



e 0 is random only because it is unknown to us, though
we may have some feelings about it (6 = .05 is more

likely than 6§ = .5

Bayesian analysis is predicated on such a belief in
subjective probability, wherein we quantify whatever
feelings (however vague) we may have about 6 be-
fore having looked at the data ¥ in the distribution
p(0).

This distribution is then updated by the data via
Bayes' theorem with the resulting posterior distri-

bution — p(# | y) — reflecting a blend of the in-

formation in the data and in the prior

e By appealing the Binomial model, we are assuming
that the n births are conditionally independent given
6, with the probability of a female birth equal to 8 for

all cases (exchangeability assumption)
How do we perform Bayesian inferences?
o Specify a prior for § — we assume 6 ~ U|0, 1]
e Apply Bayes Rule — p(6 | y) oc p(y | 6)p(0)
e Look at p(# | y) — i.e. mean, variance, regions ..
here we found
p(0 ] y) oc 09(1—6)""Y

this is recognizable like a Beta(d | y + 1,n —y + 1).
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Single parameter models

Binomial Model

e y is the total numbers of successes in a trial

e 0 is the probability of success in each trial

ep(y | 6) x0Y(1—0)" Y is the likelihood

e Example: estimating the probability of female birth

Two hundred years ago it was established that the
proportion of female births in European population

was less than .5

Let y the number of girls reported in n recorded births
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Prior Prediction: Bernoulli

e y; ~ Bern(#) and

00~ U0,1]
e calculate
plyi=1) = fy plyi =1|0)p(0)do
— [ 0p(6)d6
= Bl =}
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Prior Prediction: Binomial Posterior Prediction

ey => " 1y; ~ Binomial(n,#) and
e~ U|0,1

o y =2 i1Yils
e calculate =1

e the posterior predictive distribution of a “future”

binary outcome ¢ given the observed n successes

o\ D(y+ D) (n—y+1)
- <?J) [(n+2)
= o

. ['(n+2)
PS: D(y+1)T(n—y+1)

j Jo 641 —0)"vds = 1
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Frequentist approach

Given [@], what are the probabilities of various

possible outcomes of the random variable [ ?

“Weak law of large number” (Bernoulli)
y ~ Bin(n, 6)
limpsooP (|2 —6| > €]6) =0

Bayesian approach

Given [y], what are the probabilities of various

possible outcomes of the random variable 4] ?
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P(i=1]y) = J§ P(G=1]0,9)p(8 | y)dd
— [ 0p(0 ] y)do

1
=E(|y) =1
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Bayes’ Rule, y continuous

pw | y) _ p(9)p(y|9)

- p(y)

py) = [pO)ply | 6)db
e E(0)=E(E® | v))
V() =EWV(@|y)+V(E®]|y))

Posterior represents a compromise between the prior and
the data, and the compromise is controlled by the data
as the sample size increases.

Binomial inference

oE(@):%
o)=1

1
e E(f|y) =L
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Summarizing Posterior Inference

e Mean E(6 | y)
e Mode 0 = p(0 | y) = maxp(6 | y)

e Central Interval: range of values above and below
which lies (100 ./2%) post. prob.

o Region with Highest Posterior Density: region of val-
ues that contains 100(1 — «)% of the post. prob. and
that the density within the region is never lower than

outside

CI£HPD when the posterior is bimodal or skewed

CI=HPD when the posterior is unimodal and symmetric
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Binomial Example
e likelihood: #Y(1 — 6)""Y « Bin(y | 6,n)
o prior: #2711 — )P~  Beta(d | o, )
e posterior: likelihood X prior
gvta—l(1—g)nv+B-1 x Beta(d | a+y, B+n—1y)

Conjugacy: the posterior distribution follows the same
parametric form in as the prior. Beta prior is conjugate

to the binomial likelihood.

« 50| y) = ;25

» V(6 ) = PO

As n increases the prior has not influence on the posterior
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Informative Prior Distributions
Population: the prior represents a population of possi-
ble parameter values from which the 6 of current interest
has been drawn
State of Knowledge: we must express our knowledge
about 0 as if its value could be thought of as a random

realization from the prior.

Historical Justification of uniform prior

e Bayes' justification: for the binomial example it leads

uniform predictive distribution — p(y) = 1/n+ 1

e Laplace's rationale: principle of the insufficient rea-
son, i.e. “if nothing is known about # then the uni-
form is appropriate”
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Conjugate Prior distributions
e T is the class of the sampling distributions

e P is the class of the prior distributions

‘P is natural conjugate for F if P is the set of all
the densities having the same functional form in 6

as the likelihood

Conjugate priors are useful because

e it is easy to understand the results (analytic forms of

the mean, variance,..)
o simplify calculations
e good starting points
e you can use mixture of conjugate families

We can always use non-conjugate.......
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Exponential Families and Sufficient Statistics

Probability distributions that belong to an exponen-

tial family have natural conjugate prior distribution

The class F is an exponential family if all its members

have the form:
p(y | 0) < g"(6) exp(¢(0)t(y))
the natural conjugate prior is:
p(6) o< g"(0) exp(4(0)v)
posterior ... very easy:
p(0] ) o g7 (6) exp ($(6)(t(y) +v))
e Binomial is an exponential family with ¢(6) = logit(6)
e How about Normal, Cauchy, lognormal, Poisson?
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Example

® Question: How much evidence supports the hypoth-
esis that the proportion of female births in the popu-
lation of the placenta previa births — 6 — is less than
485, the proportion of female births in the general

populations?

e Study in Germany found that of a 980 placenta previa

births, 437 were female
o likelihood: #%37(1 — )980—437
e prior: U[0,1] = Beta(6 | 1,1)
o posterior: §437(1 — §)B0—437 — Beta(§ | 438, 544)
o P[0 < 485 | y] = .9928
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e The exponential families are the only classess of distri-
butions that have natural conjugate prior distribution
because they have a fixed number of sufficient statis-

tics.
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#posterior inference under a binomial model
#example pag 39 sec 2.5
binomial.beta_function(w=1,theta=seq(0.3,.6,.001),alpha=1,beta=1){

if (w == 1) postscript("/home/biostats/fdominic/teaching/BM/binomialbeta.f

plot(theta,dbeta(theta,436,543),type="1",xlab="theta",ylab="",
xaxs="1i",yaxs="i",yaxt="n",bty="n",cex=2) #likelihood

lines(theta,dbeta(theta,alpha,beta),lty=2) #prior

lines(theta,dbeta(theta,437+alpha,543+beta),lty=2) #posterior

abline(v=.485)

CI_quantile(rbeta(1000,437+alpha,543+beta) ,probs=c(.025,.975))

abline(v=CI[1],1ty=2)

abline(v=CI[2],1ty=2)

par (oma=c(0,0,0,0))

par(mfrow=c(1,1))

if (w == 1) dev.off()}

24



Sensitivity analysis

Bayesian inference under a Binomial model

0.30 0.40 0.50 0.60
theta

Figure 1: Likelihood, prior, posterior and 95% posterior interval for 6.

Figure 2: Likelihood, prior, posterior and 95% pgsterior interval for § for different prior specifi-
cations.
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