® Relevance of the study design in Bayesian analysis
e A collection of simple examples
e Complete-data likelihood and observed-data likelihood

missing at random

distinct parameters

e Ignorable designs with no covariates
random sampling

completely random experiments

Given

o A fixed model, including prior distribution for the un-

derlying data
o fixed observed values of the data

then:
Bayesian inference is determined regardless of the design

of the collection of the data.

This is a misplaced appeal of the likelihood principle
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How should one account for the study-design of
sample-survey
an experiment
an observational study

in Bayesian analysis?

we must include the study-design as part of full prob-

ability modelling

Key issues

e The pattern of what has been observed can be infor-

mative

e Sensitivity analysis to model specifications is part of

the Bayesian analysis

e Thinking about design and the data one could have
observed helps us structure inference about models
and finite-population estimands such us the popula-
tion mean in a simple survey or the average casual

effect of an experimental treatment.
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@ observed data
e complete data (potential data)
e missing data

Inference is conditional on observed data AND on the

pattern of observed and missing observations

e unintentional missing data: they are due to unfortu-

nate circumstances

e intentional missing data: data from units “appositely”
not sampled in a survey and results of treatments “ap-

positely” not applied in an experiment

1. With probability .1 the scale fails to report a value,
and we observe 91 values
Let I; = 1 if y; is observed and O otherwise, and let
Yobs the mean of the observed measurements.
I; ~ Bernoulli(.9)
PO [ Yobs, I) = p(6 | Yobs) = N(O | Fobs, 1/91)
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We illustrate a variety of possible missing-data mecha-
nism by considering a series of variations on a simple

example

yy =0+¢,1=1,...,100
e ~ N(0,1)
p(f) = non-informative

e 0 is the true weigh

e y;, measurement with an electronic scale

2. With probability  the scale fails to report a value,

and we observe 91 values

I; ~ Bernoulli(m)

p(9,7r | yobSaI) 8 p(@,ﬂ)N(Q | Yobs> 1/91)
x Bin(n | 100, 7)

if @ and 7 are independent, same solution as 1).

if =20/(1+6), then

(0,7 | Yobs, 1) o< N (B | ops, 1/91)Bin(n. | 100, 125)
given n=91 and 9, this density can be calculated

numerically over a range of 6, and then simulations

of 6 can be drawn using the inverse-cdF method.
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“too heavy” the number of times that the object was weighed. In

I; | y; = 1if y > 200 and 0 otherwise. addition you known that no values are reported by the
P(0 | Yobs, I) o p(6) fp<yob5aymi8a I'| 0)dym;s scale over 200
o N(6 | §ps, 1/91)[@(6 — 200)]° p(0 | Yobs, 1) o ( N(O | Yobs> 1/91) S N—01 P(N |
4. Censoring point unknown: all values above ¢ kg are % (0 — ¢)] N—91
reported as “too heavy”

p(G, N) X
D0 ] Yopss I) = N(O | Gopss 1/91)[L — (6 — )]~

=i

(O | Yobs, I) o< p(& | O)N (O | Gops, 1/91)[2(6 — )]’

e Do these data collection mechanisms influence the Notation for observed and missing data
e 2 _ _
posterior distribution of 67 ®y = (y1,...,yN) matrix of potential data
e We need to expand the sample space to include, in ad- oI =(I Iy) matrix of indicators
e

. h lati e bl . .
dition to the population data y, an indicator variable I = 1if ;5 is observed

I for whether each element y is observed or not. . .
I;; =0if y;; is missing
° obs:{i,j ij = 1}

. mis:{i,j L= 0}

Formal models for data collection
We divide the modeling tasks into two parts
® modeling the complete data y ® Yobs Ymis collection of elements of y that are ob-

e modeling the observation variable I which indexes served and missing

which potential data are observed
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Complete-data likelihood

py,116,¢)=ply|0)p |y, o)

e p(y | 0) is the model for the underlying data

e p(I |y, ) is the model for the inclusion vector [
e () parameter of interest

® ¢ index of missingness of the model

but.. the actual information available is (y,ps, 1)
Observed-data likelihood

p(@/absa[ | 07¢) = fp(y,l | 0, ¢)dymis

if fully observed covariates = are available, all these ex-

pressions are conditional on x.
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Censored data
Example 4: censoring point unknown

ey = (y1,...,y100) original uncensored weighings

® Yobs = (U1,0bs» - - - » Y91,0bs) Observed information

o] = (Iy,..

ones and 9 zero

., I100) inclusion vector composed of 91

e complete data-likelihood Hllg({ N(y;|6,1)

e likelihood of the inclusion vector

p(I'1y,6) = I p(Fi | 9i,0)
Lif(Z; =1)and y; < ¢ or

[T if(I; = 0) and y; > ¢

0 otherwise
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e Complete-data likelihood with covariates x
p(y, I z,0,9)=py|z,0)p|zy,e)

e joint posterior

p(9: (b | T, Yobss I) X p(@, ¢ | CC)
x [ply | ,0)p(I | ,y,0)dymis

e marginal posterior

PO | 2, Yobs, 1) o< p(0,| x)
x [ [p0.¢]z)ply|=,0)
p(I | z,y, 0)dymisd¢
e Goal: draw posterior simulations of the joint vector of

the unknowns (Yis, 0, @)
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e Joint likelihood of y,, and
PYobs: L 1 0,0) = fp(y,l | 0, ®)dYmis

= |T12L1 N obs 16, 1)]
x [@(6 — o))

P09 | Yobs, 1) o< (0, #)p(Yobs, I | 0, 0)

the unknown ¢ cannot be ignored in making inferences

about 6

16
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1. Finite population quantities: summaries of the com-

plete data

2. Superpopulation quantities: summaries of the under-

lying parameters

It is usually convenient to divide our analysis and com-

putation in 2 steps:
1. superpopulation inference: p(0, ¢ | =, yops, I)

2. finite population inference: p(Ymis | T, Yobs: 0, D)
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Ignorability

Study design or the missing data mechanism is Ig-

norable if p(0 | ,yops, I) = PO | T, Yops)- In

this case the posterior inferences on 6 and the predictive
distribution of y,,,;s are determinated by the specification
of the model, p(6 | z)p(y | 6,x) and by the observed
values Y ps:
PO [ 2, yobs) = p(0 | 2)p(yobs | ,0)
o p(0 | z) [ p(y | ,0)dymis

The censored data example with unknown censoring point

is not an Ignorable design.... show that
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e Posterior simulations of 1,,,;s from its posterior distri-

bution are called “multiple imputations”

el’ ¢l ~ p<9a ¢ | T Yobs» I)
Ymis ~ p(ymis | x,yobs,l,Gl, ¢l)

Posterior predictive distributions

e predicting future complete data § — it depends only
on the available data distribution p(y | z,6) and the
posterior distribution of ¢

e predicting future observed data ¢,,, — it depends

also on the data collection mechanism p(I | z,y, ¢)
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Missing at random and distinct parameters

Two conditions are sufficient to ensure Ignorability of
the missing data mechanism for the Bayesian analysis

Missing at random: p(1 | z,y,6) = p(I | . Yops, ).

Distinct parameters:

p(#,0) = p(o)p(0)
p(@|z,0) =p(¢| =)

Missing at random +

Distinct parameters =

|gnorability

20
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For all Ignorable designs, with fixed data and fixed
models for the data, the data collection process does

not influence Bayesian inference

e The data collection does not influence Bayesian infer-

ence only for all the Ignorable designs

e Even with fixed likelihood function p(y | #) and with
fixed data y, the posterior distribution does vary with

different “non-Ignorable” mechanism. example 7.2

e known mechanisms: data collection processes that

follow a known parametric family
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Ignorable and known design: random sampling
e y; weekly amount spent on food by the i-th person,
1=1,...,N
e Aim: to estimate the average weekly spending on food
in the population: y = 1/N sz\il Yi
e we estimate ¢ by a sample of n < NN persons
ol = (I,..

not person ¢ is included in the sample

., Iy) vector of indicators for whether or

e Formally, simple random sampling is defined by
—1
N

p(I [y,¢) = p(I) = n

0 otherwise

ifZ[i =N

This method is Ignorable and known
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op(I | z,y,¢) = p(I | Z,Yobs)
e there is not an unknown parameter ¢ because there

is a single acceptable specification for p(I | z,y)

e we need only p(y | #) and p() for inference
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Bayesian Inference for superpopulation

and population estimands

e posterior inference is based on
PO | Yobs, I) o< p(0)p(Yobs | 0)

e the estimands ¢ can be expressed as

oon N —n_
y= N’!/obs + Tymis (*)

Simulations from p(y | Yops, )
1. draw 6! ~ p(6 | )

2.draw gl oo ~ PYmis | 6%, yobs) = TLi1,—0 (i | 01).
Then gim’s ~ P(Ymis | Yobs)

3. because 7, is known we can easy compute draws '

from p(y | yops) by using (%)

24
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population inferences

o N —n large

o2
P(Ymis | 0) = N | Umis | 1 N_n

p=E(y; | 9), 0 =Var(y; | )

o n large
i | vots) = N | T iy
P(Umis | Yobs) = Ymis | Yobs: n(N—n)Sobs
P | Yobs) ~ N(J | Yobs %Sgbs)

e Normal model + non informative prior

N —n 2
(y | yobs) =tp— 1(9 | Yobs) 7 N obs)
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Bayesian Inference for superpopulation and population

estimands

e given that the treatment assignment is Ignorable

PO | Yobss I) o< p(0)p(Yops | )
PYops | 0) = Hi:[i:(l,O)p(yiA | 6)
x Tlir—o1)PwF 1 6)

e simulations from p(@éis, Qﬁis | Yobs: 0)
draw 6!~ p(0]y)

draw yfnis ~ P(Ymis | 9, Yobs)

where
P(Ymis | 0, Yops) X Hi:[i:(l 0)p(yZA | el’yiB)

|6,y

Y

B
X ITiz=(0,1) P(y;

)

e need a model for (yZ ,yl | 6) ..ex 7.9
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e 11/2 units receive treatement A or B

e outcomes (yzA,le),];i =1,...,n

e casual effect of A versus B: yZA — yZB

e average casual effect: E(y;4 16)— E(yP | 0)
o finitre population effect: ng — g8

e data collection indicator I; = (IZA,IlB), =1,...,n

where I; = {(1,0),(0,1),(0,0)}

e this treatment assignment is known and Ignorable
-1

if 2 IA=31F =

(I |y, ¢) = n/2

0 otherwise
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Large sample correspondence
o ;4 — 4B are sensitive to p(ylA, yZB | 6) and

to corr(y yB | 6) for which no data are available

e if the n units are sampled from a large population of
N units then the sensitivity vanishes, in fact
for n and N/n large

_ _ 2
p(yA - yB | Yobs) = N(yobs - Z/fbsa n( obs + Sobs)

28
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Suppose that someone else weigh an object 100 times
on an electronic scale with known N(6,3) error distri-
bution. This person provides to you also the 91 ob-
served values, but not the number of times the object
was weighed.

Also suppose that we known that no values are reported
by the scale over ¢, where the truncation point ¢ is un-
known.

Perform a Bayesian analysis assuming p(6, ¢) = N(6,2)
and p(6, ¢) non informative.
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Table 1: Use of observed and missing data notation for various data structures

Example Observed data Complete data
) Values from the n Values from all N
Sampling . . .
units in the sample units in the population
. Qutcomes under the observed ~ Outcomes under all
Experiment

Rounded data

Unintentional missing data

treatment for each unit treated treatment for all units

Rounded observations Precise values of
all observations
observed data values Complete data, both

observed and missing
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