Aims

- Posterior simulation and integration
- Direct simulation
 - by calculating at a grid of points
 - Rejection Sampling
- Numerical Integration
 - Importance Sampling
 - -Importance Resampling (SIR)

Direct approximation by calculating at a grid of points

- 1. Compute the unnormalized density, $q(\theta \mid y)$, at a set of evenly spaced values $\theta_1, \dots, \theta_N$, that cover the range of parameter space that is of interest
- 2. Approximate $p(\theta \mid y)$ by a discrete density at θ_1,\ldots,θ_N with probabilities $q(\theta_i)/\sum_{i=1}^N q(\theta_i \mid y)$
- 3. the method will work also with an unnormalized density $q(\theta \mid y)$
- 4. Once a grid of density values is computed, a random draw from $p(\theta \mid y)$ is obtained by drawing a random sample $u \sim U[0,1]$ then transforming by the inverse cdf method to obtain a sample from the discrete approximation

3

Posterior simulation and integration

- Complicated model such as hierarchical models are most conveniently summarized by random draws from the posterior distribution of the model parameters
- We should report
 - percentiles of the posterior distribution of univariate estimands
 - scatterplot of simulations
 - contour plot of the density functions of the posterior distribution of the multivariate estimands

Rejection Sampling

1. Technique for simulating draws directly from $p(\theta \mid y)$

2. let $q(\theta \mid y) \propto L(\theta) p(\theta)$, e.g. an unnormalized density

3. let $g(\theta)$ a positive function defined for all θ such that: we can draw from $g(\theta)$

 $\exists M:\ q(\theta\mid y)\leq Mg(\theta)\ \forall \theta \ \text{such that}\ q(\theta\mid y)>0$ $g(\theta)$ must have a finite integral

- 1. draw θ_j from $g(\theta)$
- 2. draw u_j from U[0,1]
- 3. if $Mu_jg(\theta_j) < L(\theta_j)p(\theta_j) \ \to \ {\rm accept} \ \theta_j$ otherwise reject θ_j
- 4. in other words we accept θ_j with prob $\frac{L(\theta_j)p(\theta_j)}{Mg(\theta_j)}$

Advantages

- 1. if $g \propto p$ with a suitable value of M we can accept every draw with probability 1
- 2. if g it is not nearly proportional to p, M must be so large that almost all the samples obtained in step 1. will be rejected in step 2.
- the method is self monitoring if the method is not working efficiently, very few simulated draws will be accepted

figure

Illustration of the rejection sampling: the top curve is an approximation function, $Mg(\theta)$, and the bottom curve is the target density $q(\theta \mid y)$. As required $Mg(\theta) \geq q(\theta \mid y)$. The vertical line indicates a single random draw θ^* from $g(\theta)$. The probability that a sampled θ^* is accepted is the ratio of the height of the lower curve to the height of the higher curve in the value θ^*

Importance Sampling and Numerical Integration

- \bullet Aim: to estimate $E[h(\theta)\mid y] = \int h(\theta) p(\theta\mid y) d\theta$
- ullet Problem: a closed form of $p(\theta \mid y)$ is not available
- ullet Let g(heta) be a normalized density from which we can generate random draws
- we can write

$$\begin{split} E[h(\theta) \mid y] &= \int h(\theta) \frac{p(\theta \mid y)}{g(\theta)} g(\theta) d\theta \\ &= c^{-1} \int h(\theta) w(\theta) g(\theta) d\theta \text{ where} \\ w(\theta) &= \frac{q(\theta \mid y)}{g(\theta)} \text{ and } c = \int q(\theta \mid y) d\theta \end{split}$$

- ullet draw $heta^1,\dots, heta^L$ from g(heta)
- ullet calculate the importance ratios $w(heta^l) = rac{q(heta^l|y)}{g(heta^l)}$
- \bullet estimate $E[h(\theta)\mid y]$ by $\frac{\frac{1}{L}\sum_{l=1}^{L}h(\theta^l)w(\theta^l)}{\frac{1}{L}\sum_{l=1}^{L}w(\theta^l)}$

Importance Sampling, cont.

- \bullet Unlike the rejection sampling, the approximating density $g(\theta)$ must be normalized
- Importance sampling is not a very useful method if the importance ratios vary substantially
- estimates will be poor if the largest ratios are too large relative to the others.
- ullet for example using a t_3 as an approximation of the normal (good idea)
- ullet using a normal as an approximation of the t_3 (bad idea)

Sampling-Importance Resampling SIR

- Importance weights can be used to get a sequence of draws that approximate the target distributions by using the SIR method
- $g(\theta)$ can be unnormalized
- \bullet if the ratio $q(\theta\mid y)/g(\theta)$ is bounded, then we can use rejection sampling also
- ullet in SIR we sample $heta^1,\dots, heta^L$ from g(heta), a sample k < L draws from a better approximation of $p(heta \mid y)$ can be simulated as follows:
 - 1. Sample a value θ from the set $\left\{\theta^1,\dots,\theta^L\right\}$ where the probability of sampling each θ^l is proportional

to the weight

$$w(\theta^l) = \frac{q(\theta^l \mid y)}{g(\theta^l)}, \ \sum_{l=1}^L w(\theta^l) = 1$$

- sample a second value using the same procedure, but excluding the already sampled value from the set
- 3. repeatedly sample without replacement $k-2\,\,\mathrm{more}$ times
- Example: Program simulations, using t_3 as approximation of the normal (ex:10.9)
- ullet in other words... we draw θ^* from the discrete distribution over $\{\theta^1,\ldots,\theta^l,\ldots,\theta^L\}$ with probabilities $w(\theta^l)$ (weighted bootstrap)

10

Why sample without replacement?

- If the importance weights do not vary much, sampling with or without replacement gives similar results
- now consider a bad case, with a few large values and many small values
- \bullet sampling with replacement will pick the same few values of θ again and again
- sampling without replacement yields a more desirable approximation somewhere between the starting and the target densities
- histogram of the logarithms of the largest importance ratios to check that there are no extremely high values that would unduly influence the distribution.

11

```
#importance sampling when the importance weights are well behaved
if (w == 1) postscript("/home/biostats/fdominic/course/SIRgood.ps")
 par(mfrow=c(2.1))
 par(oma=c(0,0,2,0))
 theta.better NULL
 weight_NULL
 for(1 in 1:L){
   theta[1]_rt(1,DF)
   weight[1]_dnorm(theta[1],mean=mmm,sd=sss)/dt(theta[1],df=DF)
 hist(log(weight),nclass=100,xlab="log importance ratios",density=-1)
 \verb"post.mean_mean" (\texttt{theta*weight})
 post.var_1/L*sum(weight*(theta-mean(theta))^2)
 theta.better_sample(theta, K,prob=weight)
 hist(theta.better,xlab="theta",nclass=100,
      \verb|xlim=c(x1[1],x1[2])| , \verb|density=-1|, \verb|prob=T|, \verb|yaxt="n"||
        _density(theta.better,width=width,from=x1[1],to=x1[2])
 lines(true$x,true$y,type="1", lty=2)
 abline(v=mean(theta.better))
 abline(v=mean(theta.better)-sqrt(var(theta.better)), lty=2)
 abline(v=mean(theta.better)+sqrt(var(theta.better)),lty=2)
 par(mfrow=c(1,1))
 par(oma=c(0,0,0,0))
 if (w == 1) dev.off()
 return(post.mean,post.var)
```

12

 ${\ensuremath{\sf Figure}}\ {\ensuremath{\sf 1:}}\ {\ensuremath{\sf Importance}}\ {\ensuremath{\sf sampling}}\ {\ensuremath{\sf when}}\ {\ensuremath{\sf the}}\ {\ensuremath{\sf weights}}\ {\ensuremath{\sf are}}\ {\ensuremath{\sf good}}\ {\ensuremath{\sf and}}\ {\ensuremath{\sf behaved}}$

- 1