Aims
® Posterior simulation and integration
e Direct simulation
— by calculating at a grid of points
— Rejection Sampling
o Numerical Integration

— Importance Sampling

— Importance Resampling (SIR)

Direct approximation by calculating at a grid of points

1. Compute the unnormalized density, ¢(6 | y), at a set
of evenly spaced values 61,...,0), that cover the

range of parameter space that is of interest

2. Approximate p( | y) by a discrete density at 61, ... ,0y
with probabilities ¢(6;)/ SV, ¢(6; | v)

3. the method will work also with an unnormalized den-
sity ¢(6 | y)

4. Once a grid of density values is computed, a random
draw from p(6 | y) is obtained by drawing a random
sample u ~ U|0, 1] then transforming by the inverse
cdf method to obtain a sample from the discrete ap-

proximation

Posterior simulation and integration

e Complicated model such as hierarchical models are
most conveniently summarized by random draws from
the posterior distribution of the model parameters

e We should report
— percentiles of the posterior distribution of univariate

estimands
—scatterplot of simulations

— contour plot of the density functions of the posterior

distribution of the multivariate estimands

Rejection Sampling
1. Technique for simulating draws directly from p(6 | y)
2. let (0 | y) o< L(0)p(6), e.g. an unnormalized density
3. let g(6) a positive function defined for all 6 such that:
we can draw from ¢(0)
aM : q(0 | y) < Mg(f) V6 such that ¢(0 | y) > 0
g(0) must have a finite integral
1. draw 6; from g(6)
2. draw u; from U[0, 1]
3.if Mu;g(6;) < L(0j)p(6;) — accept 6; otherwise
reject 0;

. o L(6;)p(6;)
4.in other words we accept 6; with prob W
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Advantages

1.if g o< p with a suitable value of M we can accept

every draw with probability 1

2.if g it is not nearly proportional to p, M must be so
large that almost all the samples obtained in step 1.

will be rejected in step 2.

3. the method is self monitoring — if the method is not
working efficiently, very few simulated draws will be

accepted

Importance Sampling and Numerical Integration

e Aim: to estimate E[h = [h(0)p(0 | y)db

e Problem: a closed form of p(0 | y) is not available

e Let g(f) be a normalized density from which we can

generate random draws

e we can write
EnO) |yl = [ h(6) )d9
= _1fh 0)df where
w(6) :%an c:fq9|yd¢9

edraw 4!, ..., 0% from g(6)

!
e calculate the importance ratios w(f!) = %
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e estimate E[h(0) | y] b

figure
lllustration of the rejection sampling: the top curve
is an approximation function, Mg(f), and the bottom
curve is the target density ¢(@ | y). As required M g(0) >
q(0 | y). The vertical line indicates a single random draw
6* from g(f). The probability that a sampled 6* is ac-
cepted is the ratio of the height of the lower curve to

the height of the higher curve in the value 6*

Importance Sampling, cont.

e Unlike the rejection sampling, the approximating den-

sity g(#) must be normalized

e Importance sampling is not a very useful method if

the importance ratios vary substantially

e estimates will be poor if the largest ratios are too large

relative to the others.

e for example using a t3 as an approximation of the

normal (good idea)

e using a normal as an approximation of the t3 (bad
idea)



Sampling-Importance Resampling SIR

e Importance weights can be used to get a sequence
of draws that approximate the target distributions by
using the SIR method

e g(6 can be unnormalized

e if the ratio ¢(6 | y)/g(0) is bounded, then we can use

rejection sampling also

e in SIR we sample A1, ..., 6L from ¢(6), a sample k <
L draws from a better approximation of p(f | y) can

be simulated as follows:

1. Sample a value 6 from the set {01, e ,GL} where

the probability of sampling each 6 is proportional

Why sample without replacement?

e If the importance weights do not vary much, sampling

with or without replacement gives similar results

e now consider a bad case, with a few large values and

many small values

e sampling with replacement will pick the same few val-

ues of 6 again and again

e sampling without replacement yields a more desirable
approximation somewhere between the starting and

the target densities

e histogram of the logarithms of the largest importance
ratios to check that there are no extremely high values
that would unduly influence the distribution.
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to the weight
[
w(@l) _ Q(e | y)’ Zw<el) -1

2.sample a second value using the same procedure,
but excluding the already sampled value from the
set

3. repeatedly sample without replacement k& — 2 more

times

e Example: Program simulations, using t3 as approxi-
mation of the normal (ex:10.9)

e in other words... we draw #* from the discrete dis-
tribution over {91, L0k ,9L} with probabilities
’w(el) (weighted bootstrap)
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#importance sampling when the importance weights are well behaved
importance_function(w=0,L,K,mmm=0,sss=2,DF=3,x1=c(-5,5)){

if (w == 1) postscript("/home/biostats/fdominic/course/SIRgood.ps")
par (mfrow=c(2,1))
par (oma=c(0,0,2,0))
theta_NULL
theta.better _NULL
weight NULL
for(1 in 1:L){
theta[1] _rt(1,DF)
weight [1]_dnorm(thetal1l],mean=mmm,sd=sss)/dt (theta[1],df=DF)

hist(log(weight) ,nclass=100,xlab="1log importance ratios",density=-1)

post.mean_mean(theta*weight)

post.var_1/L*sum(weight*(theta-mean(theta)) "2)

theta.better_sample(theta, K,prob=weight)

hist(theta.better,xlab="theta",nclass=100,
xlim=c(x1[1],x1[2]) ,density=-1,prob=T,yaxt="n")

true _density(theta.better,width=width,from=x1[1],to=x1[2])

lines (true$x,true$y,type="1", 1lty=2)

abline (v=mean(theta.better))

abline (v=mean(theta.better)-sqrt(var(theta.better)),1ty=2)

abline (v=mean(theta.better)+sqrt (var(theta.better)),lty=2)

par (mfrow=c(1,1))

par (oma=c(0,0,0,0))

if (w == 1) dev.off()

return(post.mean,post.var)
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Good Bad
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Figure 1: Importance sampling when the weights are good and bad behaved
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