Regression Models

e Bayesian analysis of the “ordinary linear regression”
(Chapter 8)

e Example: analysis of radon measurements

e Hierarchical Linear Regression Models (Chapter 13)
e Simple random effect model

o Mixed effect model

e Bayesian Variable Selection

2. setting up a prior for € that accurately reflects sub-

stantive knowledge

Ordinary Linear Regression

e Question: how does one quantity, y, vary as a function

of another quantity =7

ey = (y1,...,Yn) is the continuous outcome

oz, = (x;1,...,T;) is the vector of explanatory vari-

ables, discrete or continuous

e X is the n X k matrix of the explanatory variables
Elyi | 8,X] = Brzit+ ...+ B
Varly; | B,X] = %, fori=1,...,n
0 = (B1,-. -, By, 0?)
1. define z and y (possibly using transformations) so
that Ely; | 5, X] is approximately linear, with normal

errors

Ordinary Linear Regression, Basic Model
y|B,0%,X ~ N(XB,oI)
p(B,0%| X) ~ a7

conditional distribution of 3 given o
B10%y ~ N(B,Vso?)
B = (X'X) Xy
Vs = (Xtx)~!
conditional distribution of o
o? |y ~ x An—k,s?)
= agly - XB)y - XB)
B and s2 are the MLE.



When the posterior is proper?

For any analysis based on a improper prior distribution,
it is important to check that the posterior distribution is
proper.

p(B,02 | y) is a proper as long as

1.n>k

2.rank(X) = k (e.g. columns of X must be linearly
independent)

Sampling from the posterior distribution
e draw o from x 2(n — k, s%)

e draw 3 conditionally to o2 from N(B, Vﬂa2)

Analytic form of the posterior predictive distribution
Jly  ~ tan(XB, (I + XV5XY))

Elglyl = E[E®G]|B,0%y) 0%y
= E[XB | 0%y
Xp
Varlg|y,0% = E[Var(y|B,0°y) | o°,y]

+ VarlE( | B,0%y) | 0%y] =
Elo*I | o®y] + Var[X8 | o?,y] =
ol + o2 X VX!

p(7 | y), has two components of uncertainty
1. variability of the model not accounted by X3 (02

2. posterior uncertainty in 3 and ¢ due to the finite

sample size of y

Posterior Predictive distribution
e X new data
e i future outcomes
e posterior predictive simulations
To draw a random sample § from p(7 | y), we
1. draw aQ(j),,B(j) from p(o?, 6 | y)
2. draw 7 ~ N(Xﬁ(j), 02(j)1) forj=1,...,N

Table 1: Short-term measurements of radon concentration in a sample of houses in three counties
in Minnesota. All measurements were recorded on the basement level of the houses, except
for those indicated with * which were recorded on the first floor

County Radon Measurements

Blue Earth 5.0, 13.0, 7.2,6.8,12.8,5.8%,9.5,6.0,3.8,14.3%¥,1.8,6.9,4.7,9.5
Clay 0.9%,12.9,2.6,3.5%,26.6,1.5,13.0,8.8,19.5,2.5%,9.0,13.1,3.6,6.9*
Goodhue 14.3,6.9%,7.6,9.8%,2.6,43.5,4.9,3.5,4.8,5.6,3.5,3.9,6.7

Analysis of Radon measurements

® Exercise 8.1: fit a linear regression to the logarithms of the radon
measurements, with indicator variables for the three counties and

for whether a measurement was recorded on the first floor.
e Basic model
log(yi) = Brzi1 + Pawio + B3wiz + Bazia + €
& ~ N(0,0%)
where

e ;1 is the basement indicator
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) le’ 3713 and ZE’L4 are Countles |nd|cators #bayesian approach to ordinary linear regression, radon data-set pag.189 Gelman boox,

#ex 8.1(a) exercise 8.1(b) homework
#explanatory variables:basement indicator and three counties indicators
make. indicators_function(x){

ux_unique (x)

matl_matrix(x,nrow=length(x) ,ncol=length (ux))

measurements (no in the basement) in the County mat2_matrix(ux,nrow=length(x),ncol=length(ux),byrow=T)

(mat1==mat2)*1}

e exp(f9) denotes the geometric mean of the radon

B|Ue Earth bayesian.regression_function(nsim=1000){
y.1_c(s.0, 13.0, 7.2,6.8,12.8,5.8,9.5,6.0,3.8,14.3,1.8,6.9,4.7,9.5)
y.2_¢(0.9,12.9,2.6,3.5,26.6,1.5,13.0,8.8,19.5,2.5,9.0,13.1,3.6,6.9)

] eXp(/Bz-i—/Bl) denotes the geometric mean of the radon y.3_c(14.3,6.9,7.6,9.8,2.6,43.5,4.9,3.5,4.8,5.6,3.5,3.9,6.7)

basement.1_c(1,1,1,1,1,0,1,1,1,0,1,1,1,1)

- . basement.2_c(0,1,1,0,1,1,1,1,1,0,1,1,1,0)
measurements (in the basement) in the county Blue basement 3.c(1,0,1,0, 1.1, 1,1.1,1,1.1,1)
counties_rep(1:3,c(length(y.1),length(y.2),length(y.3)))
Earth y_cly.1,y.2,y.3)
x_cbind(c (b t.1,b. t.2,b. t.3) ,make.indicators(counties))

1s.out_lsfit(x,log(y),intercept=F)

1sd_1s.diag(1s.out)

n_nrow(x)

k_ncol (x)

sigmasqr_rep(NA,nsim)

B1, B2, B3, PB4, log(c) ~ constant beta_natrix(iA,nsin, k)

for (i in 1:nsim){
sigmasqr[i]_1sd$std.dev*(n-k)/rchisq(1,n-k)
PP_ t (x)%x%x
VV_solve (PP)
VV_.5x(VV+t£ (VV))
betali,]_simulate.multnorm(as.numeric(ls.out$coef),sigmasqr[i]*VV)

e Prior

}
output_exp(cbind(betal,2],betal,1]+betal[,2],betal,3],betal,1]+betal,3],
betal,4],betal,1]+betal,4],sigmasqr))
for(i in 1:ncol(output)) print(round(quantile(outputl,il,c(.25,.5,.75)),1))

return(beta)
}
9 10
P . i1 . . .
peterior duartiles Hierarchical Regression Models (Chapter 13)
25% 50% 75%
geometric mean for Blue earth (no basement) exp(beta2) 3.9 5 6.6
geometric mean for Blue earth (basement) exp(betal + beta2) 6 7 8.2 A A
geometric mean for Clay (no basement) exp(beta3) 3.7 4.8 6.1 H|erarch|ca| Model —+—
geometric mean for Clay (basement) exp(betal + beta3) 5.6 6.5 7.9
geometric mean for Goodhue (no basement) exp(betad) 3.8 4.9 6.2 .
geometric mean for Goodhue (basement) exp(betal + betad) 5.7 6.8 7.8 RegreSSIon Model -
geometric std of predictions, exp(sigma) 2 2.3 2.6
Hierarchical Regression Model

Hierarchical Regression Models are useful tools when:

e we have covariate information at different levels of

variation

e data are obtained by stratified or cluster sampling
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Posterior Distributions of the coefficients For example, in studying scholastic achievement we

may have information about

25
|

1. individual students (family background)

2. class-level informations (characteristics of the teacher)

20
|

3. information about the school (educational policy, type

of neighborhood)
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Figure 1: Boxplots of sample of the posterior distlgibutions of the coefficients of “basement” and
“no basement” for three counties
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rat tumor data set in Gelfand et al. (1990) is an Hierarchical Regression Model
example of hierarchical regression model

Y;; ~ N(ai+ iy, 0%), i = 1,... k= 30 We assume a normal linear regression model for the like-

lihood
Y)Y o N(|%],2),i=1,....k
Bi Bo|’ ")’ B Y| B, X, 5y ~ N(X3,%y)
9 1G(a,b) dim(X) = n x J explanatory variables
o ~ a,
B = (B1,...,B) regression coefficient:
(gg) NN<[Z(1]}’C) E(y; | 8,X) = frzjn+...+ Bz
Var(y; | B, X) = [Eylu

ST~ W((pR) N p), BT =R, war(S) o< p7t Covly;,yi | B, X) = [Sylis
1 Jg ) - Yy
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Simple random effect model
Blaoh  ~ Ny(la,0])
e 1 is a vector of ones

o a% =0 — all B;-S equal

° a% =00 — unrelated B;-S

e p(logog) = constant — improper posterior (sec.5.4)

with all its mass on o3 =0
e we can use U% ~ x? scaled with df <2

e always check that the posterior inferences are not sen-

sitive to the choice of the prior distribution for o
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Positive intraclass correlation in a linear regression
can be subsumed into a random effect model by
augmenting the regression with J indicator variables
whose coefficients have the population distribution

B~ N(la,03])
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Intraclass correlation

e data y1,...,yn fall into J batches
Var(y;) = o2, foralli

p02 11,19 are in the same batch

Cov(yi1, Yi2) = _
0 otherwise

e if p > 0, this is equivalent to the model
Yy~ Nn<X/8a‘72[)
B~ N(loz,a%])
where X is a n X J matrix of indicator variables such

that X;; = 1 if unit 4 is in batch j and 0 otherwise.
e the equivalence of the two models occurs when p =
U%/(a2 + 0’%).
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Mixed effect model

B

B,

B, ~ Unif(—o00, 00)

B, ~ Ny(le,o3l), Jo=J =y

e 3, are exchangeable with infinite prior variance and

B =

they are labeled fixed effects

e the random effect model with the school means nor-
mally distributed and a uniform prior density assumed
for their mean « is equivalent to a mixed-effect model
with a single constant fixed-effect and a set of random

effects of mean 0.

20



Several sets of random effects

B,
Bk

By, ~ Ny (lag,03 1)
e a mixed effect is obtained by setting the variance to

oo for one of the clusters of random effects
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Interpretation as a single regression

We consider the hierarchical model as a single normal
regression model using a “larger” data set that includes
as observations the information added by the population

and hyperprior distributions

Y | X, 75 e ~ N( Xy, L)
where
oy =(f,a), dim(y)=J+ K

oy = (y,0, )’

X 0 st 0000
o Xo=| I; —Xp D i B 50

0 Ig 0 0 x;t
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General notation and computation for hierarchical

linear models
y| X, 8,2 ~ Np(XB,%5y) likelihood
B | Xg,a, X5 ~ NJ(XIgCY, Eﬂ) population dist.
alay,Xa  ~ Ng(ag,Xa) hyperprior dist.

e 1 data points y;
e J parameters [3;

e K parameters ay,
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If any of the components of 3 or a have non informative
prior distributions, the corresponding rows in 4, and X,
as well as the corresponding rows and columns in 2;1,
can be eliminated, because they correspond to observa-
tions with infinite variance. The resulting regression then
has n + J, + K, “observations” where J, and K are
the number of components of 5 and a with informative

prior distributions.
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Bayesian Variable Selection
(George and McCulloch JASA 1993)

e The problem is to find and fit the “best” model of the
form
Y = X0+ X530+ ...+ X B+ ¢
e where (X7, X3,...,X7) is a “selected” subset of
Xl, - ’Xp
o If we consider the canonical regression setup
y ~ No(XB,0°T)
where 3 = (B1,. .., Bp).

e Selecting a subset of predictor is equivalent to setting
to 0 those ;s corresponding to non selected predic-

tors.
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e Bayesian variable selection introduce a binary latent
variable 7; and assumes
Bii ~ (1= 7)N(0,77) +%N(0,¢;77)
p(vi=1) = 1—p(v% =0)=p;
e p; is the prior probability that 3; will require a non zero
estimate, or equivalently that X; will be included in

the model.

e proming subset of predictors can be identified as those

with higher posterior probability

e In practice, a common sense Bayesian perspective in-
dicates that the key is to use substantive knowledge,
either as a formal prior distribution or more informally,

in choosing which variable to include.

26



