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DEVELOPMENTAL TOXICOLOGY

e Pregnant laboratory animals (dams) are ex-

posed to varying doses of a toxic compound

e After they have given birth, the number of

birth defects among the offsprings is recorded
e Goals:

1. Investigate the relationship between the ex-
posure to a potentially toxic compound and

the frequency of birth defects
2. Estimate the effective dose FD(k) defined
as the dose level at which the probability of

malformation reaches a certain value k

OUTLINE

e Developmental Toxicology

# of malformations among live off-spring is
not well modeled by the Binomial-logistic

model
e Motivation

greater flexibility in the distribution of the

response given the dose
e Semiparametric Extensions of GLM'’s

The cdf of the response given the dose fol-

lows a Dirichlet Process mixture
e Data analyses of two toxicology studies

e Posterior and Predictive Bayesian inferences

STANDARD APPROACH

e Logistic-Binomial Model

y? ~ BinomiaI(N]d, Hd), j=1,...,M
logit(0?) = By+ fid, d=1,...,D
where:

3 y;i is the number of malformations among de

live pups of dam ; exposed to dose d

e 9% is the probability of malformation



PROBLEMS WITH THE STANDARD
APPROACH

e data frequently display evidence of departure
from the logistic-binomial model (Catalano,
Ryan, 1994)

o clustered data - within-dam correlation need

to be take into account

¢ hard-to model response distributions, display-
ing O-inflation, n-inflation (an excessive num-

ber of dams with birth defects in n out of n

pups)

SEMIPARAMETRIC APPROACH

e The distribution of the response is modeled in

a general way

e The degree to which the distribution of the
response adapts non-parametrically to the ob-

servations is driven by the data

e Logistic regression model, beta-binomial model,

finite mixture models are special cases

EXTENSIONS

e A classical extension of the Binomial-logistic
model is the Beta-Binomial model (Williams
1975,1983) where the dam-specific random

effects are modeled as a Beta distribution

¢ Random Effects and Mixed-Effects GLMS (Cox,
1983, Prenctice, 1986)

e Bayesian Hierarchical Models with paramet-
ric and non parametric distributions of the
dam-specific random effects (Wong and Ma-
son 1985, Muller and Rosner, 1997)

BAYESIAN NON PARAMETRIC

o Let fjd(y) with 0 < y < N;.l, the probability
distribution functions (pdf) of y}i
e We treat fj‘-l(y) as an unknown parameter and
we assume
f ~ D(4A, fo) eg
p(f | A, fo) o< TIjlo f(y) w1
e fy is the mean of the random pdf f
e A is the precision parameter, controlling the

amount of variation of f around f (also called

the total mass parameter)



BAYESIAN NON PARAMETRIC

eLet Y be the # pups with malformations, we
assume
Y ~ F
F ~ D(A, Fyy) where Fy = Bin(- | 0, N)
e A and 0 are

Random

Depend on Covariates

POSTERIOR DISTRIBUTIONS

e Analytical factorization into

p(F,B,v | data) « p(B,~ | data)p(F | 3,~,data)
o p(B,v)p(data | 3,v)p(F | B,~,data)

e p(data | B3,~) is available in closed form (Antoniak
1974)

e p(f?, B, | data) ~ ’D(A‘éost, fgost) where

° Ai]:l)ost = AT+ Zj”idl 1

o fpost = w'BIN(0%, NY) + (1 — w) ff

o w! = Aj(41+ 1)1 f)

° f]d is the empirical frequency of y}i among all the dams

having litter size N/ at dose d.
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SEMIPARAMETRIC LOGISTIC REGRESSION

e Dose d — M*

eDam j — N]C.l

e Live Pups de - y;l

° y;-l has an unknown cdf Fjd

F| A%, 6% ~ D(AY, Bin(6%, NY))

logit(0%) = By+ Bid
log Ad = v +md
B,y ~ p(B,7)

e A% — o then y;i ~ Binomial-Logistic Regression
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DATA ANALYSIS

e Effect of potential toxicology on birth defects
e Dams are treated; outcome in offspring
¢ 3 data sets
Simulated Binomial
DEHG
EG
e Goal: estimate dose-response parameters

e Units are clustered, extra-binomial variation,

robust inference
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PRIOR SPECIFICATION

e 3 ~ N5(0,3I) vague prior

e we assign a prior distribution on A which can

be considered a “smoothness parameter”

e larger the values of A, the more the model will

be closed to its parametric backbone

e we assign an uniform prior on the weights A/
(A + N) which control how close the poste-
rior mean of the unknown pdf is close to the

binomial pdf

¢ N indicate the number of dams in a litter-size/

dose combination
e N is a prior-hyperparameter (sensitivity anal-

ysis)
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POSTERIOR PREDICTIVE INFERENCES

e Using /% 3,~ | data ~ D(Agost, fgost)

e we can draw samples of the cdf function F]d
from a posterior predictive distribution given
the samples values of 8 and A

e samples from p(ﬁjd | data) useful to:

prediction
future data would be draws from such cdf

goodness of fit
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POSTERIOR INFERENCE ON THE
EFFECTIVE DOSE

e The effective dose at level &k ED(k) is defined
as the dose level at which the probability of
malformation is k£ times larger than it is at
background or ED(k)

e Formally gED(k) = g0
o for k > 1+ exp(fy)

ED(k) = — {log(k™"(1 + exp(—B0)) — 1) + Bo) } /B

e Posterior inferences on the £ D(k) are straight-

forward by using the MCMC runs
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POSTERIOR PREDICTIVE INFERENCES

e we select a dose/litter size combination

e we choose 10015/m?/11 for the DEHP and 904,/
m3/12 for the EG

ein the DEPH we have 6 dams total in the
sample which receive dose 100 and have a litter
size 11
e the empirical jumps are
01100130000 O
0123456789 1011
e for example there are 3 dams with 6 mal-
formed pups among the 11

¢ the cumulative sum of these frequencies is the
empirical cdf (F]d)
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DISCUSSION

e Dirichlet Process mixtures offer a PRACTI-
CAL and FLEXIBLE approach to modeling bi-

nary data with difficult error distributions

e The degree to which the model adapts non-
parametrically to the observations is DATA
DRIVEN

e The marginal posterior distribution of the pa-

rameters of interest is available in closed form

e When there aren’t enough observations they

automatically collapse into a GLM’s
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Figure 2. Inference on the ED(k) (top) and precision parameters (bottom) for the
DEHP and 2,4,5,-T data. Top panels are boxplots of samples from the posterior
distributions of effective doses ED(k) corresponding to a k—fold increase of the
probability of malformations above the background rate. The bottom left panel
displays the posterior (histogram) and prior (solid line) distributions of the precision
parameter log(A) for the DEHP data set. The bottom right panel shows boxplots
of posterior samples of the precision parameters log(A?) corresponding to the six
doses for the 2,4,5-T data set.
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Figure 1: The DEHP (left) and 2,4,5-T (right) data sets. The top panels display the
raw data. Each circle corresponds to a dam. The circles’ areas are proportional to
the litter sizes; the circles’ coordinates are the dose level and the observed relative
frequency of malformations. In addition, the numbers of dams exposed to each
dose level is displayed at the top.
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Figure 3: Samples of 20 cumulative distributions functions ﬁ’f obtained using the Semi-
parametric Bayesian (SB), the Beta-binomial (BB), and the Binomial (B) models.
For the DEHP data set we choose a dose of 100y,/m?® and a litter size of 11; for
the 2,4,5-T we choose a dose of 90ug/m3 and a litter size of 12. Empirical frequen-
cies corresnondine to the selected dose /Bter size are disnlaved at the ton of each



