Generalized Linear Models
e GLM from a Bayesian prospective

e Hierarchical models, focusing on the normal model for

the GLM-coefficients
e Hierarchical logistic regression

e Example: rat tumor data

A GLM is specified in 3 stages
1. the linear predictor n = XJ3

2. the link function g(.) that relates the linear predictor

to the mean of the outcome variable
p=g '(n)=g (XB)

3. the random component specifying the distribution of

the outcome variable y with mean E(y | X) = p;

e The purpose of GLM is to extend the idea of linear
modeling to cases for which the linear relationship be-
tween X and E(y | X) or the normal distribution is

not appropriate

e In some cases, we can apply a linear model to a
suitably transformed outcome variable using suitably

transformed (or untransformed) explanatory variables

e However, the relation between X and E(y | X) can-
not always be usefully modeled as normal and linear,

even after transformation

Notation
¢ E(y| X) =g (XB)
e X is the n X p matrix of explanatory variables
e 7 = X3 is the vector of n linear predictor values
,Yn) vector of observations
im1p(yi | (XB)i, ¢)

Special cases

oy = (Y1,
ep(y | XB,¢) =

e Poisson and Binomial model ¢ =1

e Normal model is a special case of GLM when

y ~ N(u,¢) and g(p) = p



Standard GLM likelihoods

Poisson

e y; ~ Poisson(p;) where p; = (Xf);

e log u; = m; = (XB);

oy | B) = TT71 5 exp(— exp(n;))(exp(n;)¥
Binomial

e y; ~ Binomial(n;, u;), n; known

® g(ui) = logit(u;)

oot 8) =I5 (1) (28" (i)™

e Units are clustered (extra-binomial variation)

Overdispersed models

e Overdispersion: possibility of variation beyond that of

the assumed sampling distribution

e |f we consider a logistic regression in which the sam-
pling unit is the litter of mice and the proportion of
the litter born alive is considered binomial with some
explanatory variables (such as dose). The data might
indicate more variation than expected due to system-

atic differences among mothers.

e Such variation could be incorporated in a hierarchi-
cal model using an indicator for each mother, with
these indicators themselves following a distribution

such normal or beta.

Canonical link functions
e the canonical link is the function of the mean param-

eter that appears in the exponent of the exponential

family form of the probability density
Offset

e |t is sometimes convenient to express a generalized
linear model so that one of the explanatory variables

has a known coefficient

e an explanatory variable having a kwown coefficient is

called offset



Example: Model for Poisson data
e y is the # of incidents in a given exposure time T’
o if the rate of occurrence is i per unit of time

e then the number of incidents y is Poi(uT"), where
E(y) = pT, and log(p) = X3

e However GLM are parameterized through the mean of
y which is pI', where T now represents the vector of

exposure times for the units in the regression.

e We can apply Poisson-GLM by augmenting X with
a column containing the values log7"; this column
of the augmented matrix corresponds to a coefficient

with known value (equal to -1)

Non informative prior on 3

e the classical analysis of GLM is obtained if a non

informative or flat prior distribution is assumed for 3

e the posterior mode corresponding to a non informative
uniform prior density is the MLE for 5 which can be
obtained using Iteratively Weighted Linear Regression
(IWLR)

e approximate posterior inference can be obtained from

a normal approximation to the likelihood (see 4.1)
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Bayesian non-hierarchical and hierarchical GLM
Bayesian GLM with
1. non informative prior on 3
2. informative prior on 3

3. hierarchical models for which the prior on 5 depends

on unknown parameters

4. some generalized linear models are expressed with a
dispersion parameter ¢ in addition to the regression

coefficients (3
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Conjugate prior on (3

e Specify a prior for B in terms of hypothetical data

obtained under the same model
e 7 is a vector of ng hypothetical data points

e X is the corresponding matrix of k explanatory vari-

ables

e this is equivalent to consider an augmented vector

with matrix and a non informative

Yo Xo
uniform prior density on (3

12



Non conjugate prior on 3

3~ N(o, %)
e a normal prior on 3 is very convenient when we im-

plement a normal approximation to the likelihood
Hierarchical Models

e As in the normal linear model, hierarchical prior dis-
tributions for GLM are a natural way to fit complex
data structures and allow us to include more explana-
tory variables without encountering the problem of

over fitting

e a normal distribution for 3 is commonly used
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Normal approximation to the joint posterior distribution

e If the posterior distribution p(f | y) is unimodal and
roughly symmetric, it is often convenient to approxi-

mate it by a normal distribution centered at the mode
e A Taylor series expansion of logp(f | y) centered at

the posterior mode 6 gives
2

k(0 |3) = logp(0 | 4)+5(0-0) | 2 0En(® |3)| (90

e the linear term in the expansion is zero because the

log posterior has zero derivative at its mode
p(O|y) = N@,1(6)7)

e where I(6) is the observed information
2

d
1(0) = —Wlogpw | y)
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Computing

e Posterior inference in generalized linear models typi-

cally requires simulation techniques (metropolis within

Gibbs)

e Given a method for approximating the likelihood by a
normal distribution, computation can proceed as fol-

lows

1. Find the posterior mode using an iterative algorithm
where iteration in the mode-finding algorithm uses a
quadratic approximation to the log posterior density

of B8 (and ¢) and weighted linear regression.

2. Use the normal approximation as a starting point for

simulations from the exact posterior distribution
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Normal approximation to the likelihood of a GLM

For each data point y;, we construct a

- pseudo datum z;

2
1

p(yi | (XB)i,¢) =~ N(z; | (XB);,02)
y| XB,¢ ~ Ny(z | XB,diag(0?,...,02))

Center of the normal approximation

- pseudo variance o+ so that

e The normal approximation will depend on the value 3
and ¢ at which it is centered (8, ¢)

e In the mode-finding stage of computations, we iter-
atively alter the center of the normal approximation.
Once we have reached the mode, we use the normal

approximation at that fixed value of B, (ﬁ

16



Determining parameters of the normal approximation

P,y I m,0) = TTizip(i | mi, 0)
=TTy exp (L(y; | mi, 0))
L(y; | m, ®) ~ —2(172(zi — ;)% + const

K3

A

where z;, (712 and the constant depend on y,7; = (X [3);
and qg

- L' (yi7:,9)
o = pe — Liln0)
© T i)
2 1
0; = ——————
! L"(yq|i,0)

e match the 1-th and 2-th order terms of the Taylor
series of L(y; | m;, ¢) centered at 7; = (X );

e the i-th data point is approximately equivalent to an

2

observation z; with mean 7; and variance o;
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Finding the posterior mode /3’,(/3

For non-informative or conjugate prior distributions

we can use IWLR (Splus function glm)

e Once the mode /S’,qg has been reached, one can ap-
proximate the conditional posterior of 5 by the output

of the most recent weighted least square computation,

that is
81y ~ N(B |5, V)
Vs - (Xtdiag(L” (i | 7, é)X)

Papproz(® | ) o< p(B(9), ¢ | )|Vs(e)| " /2, (9.7)

where B and Vj are the mode and the variance matrix

of the normal approximation conditional on quS
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Binomial logistic model

L(y; | mi,¢) = yilog (1:%%)
+ (ni — ;) log (Hexlw)
Find dL; /n;, dzLi/ng, z; and 012
Combining likelihood with an informative or

hierarchical prior

e Any normal prior distribution for (3 is conjugate to the
normal approximation to the likelihood of § (condi-

tional on ¢).

e If a non-normal prior model is used, then one can
construct a normal approximation for the prior density
as well, using the same method of fitting to the linear

and quadratic terms of the Taylor series.
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Sampling from the posterior distribution

e Sampling from the exact posterior distribution for a
GLM can be drawn by means of iterative simulations
using the above normal distribution as starting distri-

bution.

e Unfortunately methods from sampling from the exact
posterior distribution must be developed separately for

each class of models
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Bayesian Computations for GLM
Summary

® 3 = regression parameters

® ¢ = overdispersion parameter

ep(y | X, 8) =Ilicipyi | (XB)i: &)
o« Ely| Xp] =g '(XP)

e Three cases:

1. ¢ known 3 unknown, p(8) o ¢
2. ¢ known 3 unknown, 8 ~ N (g, X0)

3. ¢ and 3 unknown p(8,$) = p(d)p(B | ¢)
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2. ¢ known ( unknown, 3 ~ N(fy, %)

*p(B|y) < ply | B) x N(bo, Zo)
e if we use a normal approximation to the likelihood,
e.g.
papprox(y | B) = N(Ba V)

where B and V' are the mle and the corresponding
sample covariance matrix, then

papprox(B | y) = N (W[V_1/§+ 26150],W>
W = [V l4+x5?
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1. ¢ known 3 unknown, p(f3) x ¢
ep(Bly)xplylB)

e posterior mode for (3 is equal to the MLE
e if n is large, then we can obtain our posterior infer-

ence by using a normal approximation to the likelihood

function
papprox(ﬁ | y) = N(B, V)

where B and V are the mle and the corresponding sam-
ple covariance matrix (see normal approximation to the

posterior distribution)
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3. ¢ and 8 unknown p(3,¢) = p(¢)p(B | ¢)

*p(B,¢ | y) o< p(B,$)p(y | B, 8)
e find posterior mode (3, ¢)

e approximate p(3 | ¢,y) by

A

papprox(ﬂ | ®, y) = N(6<¢)a Vﬂ(ﬁb))
where (3(¢) is the conditional mode and Vi3(e) is cor-

responding sample covariance matrix

e approximate p(¢ | y) as

~

papprox(¢ | y) < p(B(#), 6| y) | Vﬂ(¢) |

and use inverse CDF method or importance sampling.

N

Alternatively...

Use simulation based methods such as MCMC.
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Table 1: Tumor incidence in a group of rats given three different doses of phenformin, from
Tarone(1982). Data from previous experiments are given in table 5.1

Dose level, z; # rats n; # rats with tumor y;

0 14 4
1 34 4
2 34 2

e the goal of the study is to estimate the dose-response
relation - the rate at which the tumor risk increases
(or decreases) as function of the dose (see pag 292

text book).

e data from other similar experiments were available
(table 5.1) which displays the results of 70 previous
experiments in the same strain of rat, all under zero

dose.

e the row in table 5.1 for the current experiment is re-

peated as the first row in Table 9.5 here
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The joint posterior distribution

pla, By u, 7 |y) o 12 Bin(yso | njo, logit™ (o))
x T4 Ny | p,7)
x TI2; Bin(y; | n, logit (a4 + Bw:))
oc TIJ2} esn (14 %) "
x TI2 Lexp (—g(ay — p)?)
x I, eler1thziyi

XTIy (1 + errntheyn

e Posterior mode of p(«, B, i, 7 | y) hard to obtain

e Better to work with p(a, B, p | 7,9)p(7 | )

27

Hierarchical logistic regression model

e current experiment

Ys ~ Bin(ni,wi) 1 :0,1,2
logit(m;) = a+ Bx; 1=0,1,2
I} ~ un informative

e historical data (additional information about «)

ij ~ Bin(’njo,ﬂ'jo) j = 1, .. .,70

logit(7;0) = j j=1,...,71
aj ~ N7
W, T ~  constant

emjr10=mpand oy =«
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Crude estimate of 8 from the current experiment

e Given an uniform prior, the MLE estimate is equiva-
lent to the posterior mode
o we found 8 = —.94, std(3) = A7
Crude estimate of 8 using complete pooling

e we pool the zero-dose data from all the 71 experi-
ments, and we use these values for yy and ng in place

of the first row of the table
e we found = —.47, std(f3) = .29
o7 = \/var(logit(%))) = .98

Yjo
njo)

e sample std of the logit(

28



# non hierarchical logistic regression - tumor data (pag 292 of Gelman)
make.data_ function() {

tmp _ cbind(c(4,4,2),c(14,34,34),c(0,1,2))

tarone _ matrix(scan("tarone.txt"),byrow=T,ncol=2)
yy0  _ tarome[,1]
mn0  _ tarome[,2]
yy _ tmp[,1]
nn _ tmp[,2] #total number of births

#number of tumors

xx _ tmp[,3] #dose

sf _ cbind(yy,nn-yy)

s£0 _ cbind(sum(yy0),sum(nn0)-sum(yy0)) #historical data

s£0_rbind(s£0,s£[2,],s£[3,])

#crude estimate of tau

length(yy0)){

if (yyO[il == 0) yyO[il _ .56}

tau.hat_sqrt (var(log( (yy0/nn0)/(1-yy0/nn0))))

return(tmp,sf,xx,sf0,tau.hat)

}

separate_function(){
DD_make.data()
glm.out

for( i in 1 :

_ glm(sf ~ xx, family=binomial, data=DD)
return(glm.out)

}

pooling_function(){
DD_make.data()
glo. out
return(glm.out)

}

##OUTPUT

summary (glm.separate) $coeff

_ glm(sf0 ~ xx, family=binomial, data=DD)

Value Std. Error t value
(Intercept) -0.9766773 0.5427958 -1.799346
xx -0.9451008 0.4777748 -1.978130

summary (glm.pooling) $coeff
Value Std. Error  t value

(Intercept) -1.7059649 0.0664078 -25.689223
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Computing

oy = (aq,...,aj1,0, 1) vector of unknown param-

eters

e To draw posterior samples of v, 7:

1.draw 7' from p(T | y) using inverse cdf or impor-

tance sampling

2. run an iterative algorithm to estimate the mode and

the curvature of p(«y | 7, y) given the just simulated

value of 7 (§(71), Vy(Tl))

3. draw 71 from a normal approximation based on the

computed mode and curvature

Y rhy = NG, Va(
Vy(rh)) = [=L'(3(rh)]
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7))

xx -0.4673848 0.2970020 -1.573675

#find conditional mode
logpost_function(gamma, tau=1){
yy_DD$tmp[,1]
nn_DD$tmp [,2]
xx_DD$xx
tarone _
yy0  _ tarome[,1]
nn0 _ tarone[,2]
J_length(yy0)-1
alpha_gamma[(1:(J+1))]
beta_gamma[J+2]

mu_gamma [J+3]

- (alpha[1:J1%*%yy0[1:J]-nn0[1:J]1%*%1log(1+exp(alpha[1:J1))+(J+1)*log(tau)

- (1/(2%tau~2)) *sum(alpha[1:J]-mu) "2

+ alpha[J+1]*sum(yy)

+ betaxxx*4yy

- nn%*%log(1+exp(alpha[J+1]+beta*xx)))

#min(-logposterior)=max(logposterior)}
mode_ nlminb(start=c(rep(0,71),0,0),0bj=logpost)}

30

matrix(scan("tarone.txt"),byrow=T,ncol=2)
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MCMC methods

e For high dimensional problems to find the posterior
mode and the curvature of the log posterior can be

very hard

e an alternative here is to implement a Metropolis within

Gibbs-Sampler, the full conditionals are:
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Hierarchical Poisson Regression
Air Pollution Data
e y7 is the daily number of deaths in city ¢
e z{ is the air pollution level (PMjp) in city c
e wi confounding variables such as weather, trend and
seasonality
e € city-specific covariates (such as poverty, SES, traf-
fic)
e Goals of the analysis:

1.Is there an association between air pollution and
mortality within each city?
2. Can we identify city-specific factors that might mod-

ify the association between air pollution and health?
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« | /Ba H, T,y ~ H_}']_l AsYi0 (1 + eaj)_njo

J+11
H] +1 7 &Xp (27_2<Oé]‘ - /'[’)2)
X Hl2:1 e C¥J+1+ﬁ$z)yz(1 + eaJ+1+ﬂ$i)—nj0

/8 | Qy Uy T, Y ~ HZ2:1 e(aJ+1+ﬁxi)yi

X

X H% (1 + e@srtBzi=n
2

1
:u’ | 04,6,7',3/ (J+1 ZJ_'_ ]7 Jll)
72| a, Bu, ~IG<,22~’“< =)
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3. How can we estimate a national relative rate of mor-
tality associated with exposure to air pollution?
Modeling Approach
e We assume the following hierarchical Model:
yi  ~ Poisson(uf)
logyf = B§ + Biwf + nwf
B = ag+ag(zf— 2%+ N(0, 72)
a ~ N(ag,D)
T~ N(0,h)I 72>0

We need to approximate

p(B,a,n, 7% | y) = p(B,a,m | 75 y)p(r? | y)

36



Bayesian Computation

e Because of the large number of days with air pollu-
tion and mortality measurements within each city, we
found that the MLE-based normal approximation to
the likelihood is adequate, so we replaced the first
stage of the hierarchical model with:

B~ N(B )
B¢ = ap + ay(2€ — 2°) + N(0,72)
a ~ N(ag, D)
72 ~ N(0,h) 2
the implementation of the Gibbs sampling is straightfor-

ward
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Figure 2. Maximum likelihood estimates and 95% confidence intervals of the log-relative rates of
mortality per 10ug/m?® increase in PMyq for gach location. The solid and the square circles
with the bold segments denote the posterior means and 95% posterior intervals of the pooled
regional effects without and with covariate adjustment, respectively. At the bottom, marked
with triangles and bold segments, are the overall effects for PMyq for all the cities without
and with covariate adjustment.

Figure 1: Map of the 88 largest US cities with the 7 geographical regions of interest. The color
scale is proportional to the estimated log relative rates of mortality, which range between
—4% and 4% increase in mortality per 10 ug/m?® increase in PMyy. The circles’ areas
are proportional to the statistical precisions of the estimates. The larger circles show less
statistical uncertainty. The circles with the black outline denote the relative rates that are
statistically significant different than zero.
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Figure 3: Boxplots of the posterior distributions of the second-stage regression coefficients.



Table 2: Second-stage variables and the rationale for their inclusion in the model. % missing

denotes the percentage of cities with a missing data.

Predictors Primary reasons for inclusion % missing

log PM 1 Possibility of a saturation effect 0

log O3 To explore modification of the effect of one pollutant to another 11

log NO2 To explore modification of the effect of one pollutant to another 35

log %NoHS Potential heterogeneity of the effects associated with 0
socio-demographic factors

logitM CC Potential heterogeneity of the effects associated with 21
the varying quality of the exposure

PMs5/PMg | Hypothesized health effects of fine particles 0

PMjg, O3 and NO; denote the mean level of PMjg, mean level of ozone (O3), and the
mean level of nitrogen dioxide (NOy) over the period 1987-1994; %NoHS is percentage of

persons lacking a high school degree; MCC' is median of all pairwise correlations of the

P Mip measure

ments among the location specific monitors.

Table 3: Posterior quantiles of the unadjusted overall P M effect on total mortality, g, under

four specifications of prior distributions on T°.

2

Prior for 72 Scenario | 5% 25% 50% T75% 95%

72 ~ N(0,1)I,25 | Baseline [ 0.06 0.33 0.43 0.53 0.77

2~ N0, )59 1 |0.09 034 047 058 0.85

2~ IG(3,1) 2 [002 029 042 055 0.78

2~ IG(3,1) 3 [0.00 030 045 0.60 0.90

Bayesian Estimates

Maximum Likelihood Estimates

Figure 5. Maximum Likelihood (bottom) and Bayesian posterior estimates (top) of the relative
risks of mortality for the largest 88 cities. Sizes of the circles are proportional to the statistical

precisions.

Overall Effects

—— TOTAL
--------- CVDRESP
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--------- TOT<65

—— TOT6575
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-1 -08-06-04-02 0 02040608 1 12141618 2

Figure 4 Marginal Posterior distributions of the overall relative rates of mortality associated
with exposure to air pollution for different health outcomes



