MCMC Examples
Rat Population growth data (Gelfand et al. 1990, JASA 1990)
Weights Y;; of rat ¢ on day z;;
1 =8|z9=15|23=22 |24 =29 | 5 = 36
rat 1 151 199 246 283 320
rat 2 145 199 249 293 354

rat 30 | 153 200 244 286 324

o V;; weight of the ith rat at measurement point j
® z;; denotes the rat's age in days at time point j
e Stage I: Sampling Distribution
Y;; ~ N(a;+ Bizij,0?), i=1,...,k=30j=1,...,n=5
e Stage |l: Prior

(=)~ ([2]5) i 10t

e Stage lll: Hyperprior
o? ~ IG(a,b)

(&) ~~([7]°)

St~ W((pR) T p), E(ETY) =R var(R) o p7

Prior Specification

e so that it is now reasonable to think of «; and 5; as independent
a priori. Thus we set &> = diag(o2,03) and replace the Wishart
prior by a product of Inverse Gamma distributions.

e prior specification C1 =0, a = b= 1/0.0001, p =2, R =
100 0
0 0.1

e each rat was weighted one a week for five consecutive weeks.
As a result, we may simplify our computations by rewriting the
likelihood as

Reparametrization

o Stage I:
Y;j ~ N(O[Z'+5Z'($Z'j*.f‘),0'2), i=1,...,k, 7=1,....n
e so that it is now reasonable to think of o; and 3; as independent

a priori. Thus we set & = diag(c?, 0[25) and replace the Wishart
prior by a product of Inverse Gamma distributions.

e we seek the marginal posterior distribution for oy, 5y given the
observed data and predictive intervals for the individual future
growth given the first-week measurement

o the number of unknown parameters is 66: (30 a;s + 30 G;s +
ag + Bo + o + 3 unique component of ¥).
e let’s re-write the sampling distribution as:
Yy, ~ N(X.0,,0%I,),i=1,...,k=30j=1,....n=5
where:
1z
> 92 = (Oli,ﬂi)

Y= Wi, s Ying), Xi =

1 xini
o find the full conditional distributions
0;|y,00, 710> ~ N(D;[o2Xty;+X716,],D;)
indi=1,...,k
6 |y,{6:},%7 0% ~ N(V[k2'8+Cn],V)
-1
v y,{6:},60,06> ~ W ([Zf:l(oi —60)"(8; — 60) + PR} k+ P)
-1
o?|y,{6:},60,> ~ IG(% +a, [% S (g — Xi0:) (y; — Xi0;) + bf]] )
where
-1 _ -2yt -1 t t
.Di =0 X’LXZ+E ,00—(010,60)
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Flour beetle mortality data Prentice Biometrics 1976
Dosage w; # killed y; # exposed w;

1.6907 6 59
1.7242 13 60
1.7552 18 62
1.7842 28 56
1.8113 52 63
1.8369 53 59
1.8610 61 62
1.8839 60 60

o these data record the number of adult flour beetles killed af-
ter five hours of exposure to various levels of gaseous carbon

disulphide (C'Ss)
e we use a generalized logit model (Prentice (1976))
P(death | w) = h(w) = {exp(z)/(1 + exp(z))}™
where
erx="4 pecRandc? m >0
e 11,02, m; are unknown parameters

e This model is a generalization of the logit and probit models
currently used in biossay experiments

e m; = 1 logistic model
e m; < 1 then P(death | w) is negatively skewed
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e my > 1 then P(death | w) is positively skewed

o the form of P(death | w) approaches the distribution function
of an extreme minimum value distribution for m; — oo and a
reflected exponential distribution for m; — 0

e MLE with a Newton-Raphson algorithm give i = 1.818, ¢ =
0.16, my = .279

e our goal is to approximate p(u, o, m; | data) by implementing a
Metropolis Algorithm

e Prior distributions

my ~ Gamma(ao, bo)
p -~ N(co,do)
a? ~ IG(eo, fo)
e Likelihood-prior
p(u,0,my | data) oc f(data | p, o, mi)m(p, o, my)

o { Tkl (1 - h(w)]" % } 25
2
<[4 () 8-
e we make a change of variable to @ = (61, 65, 63) = (11, 3 log 0%, log 1

this transform the parameter space in R? and also helps to sym-
metrize the posterior distribution, our target density is now
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p(0 | data) o {Hle[h(wi)]yi[l —h(wi)]"i’?”}exp(ag&g—2606;
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e prior specifications
emy: ag = .25, by = 4 so that E[my] = 1, std[my] =2

o and 0% ¢y =2, dy = 10,e9 = 2, fo = 1000 that is E[o?] =
0.001. std]o?] = .5

e proposal distribution Ng(O(tfl), 5)) where
> = diag(.00012,.033,.10)

e to accelerate convergence, form the output of the first algorithm
get a new estimate of ¥ as + Z;V:l(ej —0)(8; — 0)" where j
indexes Monte Carlo samples.



