MCMC Examples

Rat Population growth data (Gelfand et al. 1990, JASA 1990)

	Weights Y_{ij} of rat i on day x_{ij}				
	$x_1 = 8$	$x_2 = 15$	x3 = 22	$x_4 = 29$	$x_5 = 36$
rat 1	151	199	246	283	320
rat 2	145	199	249	293	354
rat 30	153	200	244	286	324

- ullet Y_{ij} weight of the ith rat at measurement point j
- ullet x_{ij} denotes the rat's age in days at time point j

• Stage I: Sampling Distribution

$$Y_{ij} \sim N(\alpha_i + \beta_i x_{ij}, \sigma^2), i = 1, \dots, k = 30 \ j = 1, \dots, n = 5$$

• Stage II: Prior

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} \sim N \left(\begin{bmatrix} \alpha_0 \\ \beta_0 \end{bmatrix}, \Sigma \right), i = 1, \dots, k$$

• Stage III: Hyperprior

$$\sigma^2 \sim IG(a,b)$$

$$\left(\begin{array}{c} \alpha_0 \\ \beta_0 \end{array}\right) \sim N\left(\left[\begin{array}{c} \eta_0 \\ \eta_1 \end{array}\right], C\right)$$

$$\Sigma^{-1} \qquad \sim \ W((\rho R)^{-1}, \rho), \ E(\Sigma^{-1}) = R^{-1}, \ var(\Sigma) \propto \rho^{-1}$$

1

Prior Specification

- so that it is now reasonable to think of α_i and β_i as independent a priori. Thus we set $\Sigma = diag(\sigma_{\alpha}^2, \sigma_{\beta}^2)$ and replace the Wishart prior by a product of Inverse Gamma distributions.
- \bullet prior specification $C^{-1}=0,\ a=b=1/0.0001,\ \rho=2,\ R=\begin{pmatrix}100&0\\0&0.1\end{pmatrix}$

Reparametrization

- each rat was weighted one a week for five consecutive weeks.
 As a result, we may simplify our computations by rewriting the likelihood as
- Stage I:

$$Y_{ij} \sim N(\alpha_i + \beta_i(x_{ij} - \bar{x}), \sigma^2), i = 1, ..., k, j = 1, ..., n$$

• so that it is now reasonable to think of α_i and β_i as independent a priori. Thus we set $\Sigma = diag(\sigma_{\alpha}^2, \sigma_{\beta}^2)$ and replace the Wishart prior by a product of Inverse Gamma distributions.

- we seek the marginal posterior distribution for α_0, β_0 given the observed data and predictive intervals for the individual future growth given the first-week measurement
- the number of unknown parameters is 66: (30 α_i s + 30 β_i s + $\alpha_0 + \beta_0 + \sigma^2 + 3$ unique component of Σ).
- let's re-write the sampling distribution as:

$$\mathbf{y}_{i} \sim N(X_{i}\mathbf{\theta}_{i}, \sigma^{2}I_{n}), \ i = 1, \dots, k = 30 \ j = 1, \dots, n = 5$$

$$oldsymbol{y}_i^t = (y_{i1}, \dots, y_{in_i}), \; X_i = \left(egin{array}{ccc} 1 & x_{i1} \ dots & dots \ 1 & x_{in_i} \end{array}
ight), \; oldsymbol{ heta}_i^t = (lpha_i, eta_i)$$

• find the full conditional distributions

$$\begin{array}{lll} \boldsymbol{\theta}_{i} \mid \boldsymbol{y}, \boldsymbol{\theta}_{0}, \Sigma^{-1}, \sigma^{2} & \sim & N\left(D_{i}\left[\sigma^{-2}X_{i}^{t}\boldsymbol{y}_{i} + \Sigma^{-1}\boldsymbol{\theta}_{0}\right], D_{i}\right) \\ & & \quad \text{ind } i=1,\ldots,k \\ \boldsymbol{\theta}_{0} \mid \boldsymbol{y}, \{\boldsymbol{\theta}_{i}\}, \Sigma^{-1}, \sigma^{2} & \sim & N\left(V\left[k\Sigma^{-1}\bar{\boldsymbol{\theta}} + C^{-1}\boldsymbol{\eta}\right], V\right) \\ \Sigma^{-1} \mid \boldsymbol{y}, \{\boldsymbol{\theta}_{i}\}, \boldsymbol{\theta}_{0}, \sigma^{2} & \sim & W\left(\left[\sum_{i=1}^{k}(\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{0})^{t}(\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{0}) + \rho R\right]^{-1}, k + \rho\right) \\ \boldsymbol{\sigma}^{2} \mid \boldsymbol{y}, \{\boldsymbol{\theta}_{i}\}, \boldsymbol{\theta}_{0}, \Sigma & \sim & IG(\frac{k^{2}}{2} + a, \left[\frac{1}{2}\sum_{i=1}^{k}(\boldsymbol{y}_{i} - X_{i}\boldsymbol{\theta}_{i})^{t}(\boldsymbol{y}_{i} - X_{i}\boldsymbol{\theta}_{i}) + b^{-1}\right]^{-1}) \end{array}$$

where

•
$$D_i^{-1} = \sigma^{-2} X_i^t X_i + \Sigma^{-1}, \ \boldsymbol{\theta}_0^t = (\alpha_0, \beta_0)^t$$

•
$$V = (k\Sigma^{-1} + C^{-1})^{-1}, \ \bar{\boldsymbol{\theta}} = \frac{1}{k} \sum_{i=1}^{k} \boldsymbol{\theta}_{i}$$

2

Flour beetle mortality data Prentice Biometrics 1976

Dosage w_i	$\#$ killed y_i	$\#$ exposed w_i	
1.6907	6	59	
1.7242	13	60	
1.7552	18	62	
1.7842	28	56	
1.8113	52	63	
1.8369	53	59	
1.8610	61	62	
1.8839	60	60	

- \bullet these data record the number of adult flour beetles killed after five hours of exposure to various levels of gaseous carbon disulphide (CS_2)
- we use a generalized logit model (Prentice (1976))

$$P(death \mid w) = h(w) = \{\exp(x)/(1 + \exp(x))\}^{m_1}$$

where

$$ullet$$
 $x=rac{w-\mu}{\sigma},\ \mu\in\mathcal{R}\ ext{and}\ \sigma^2,\ m_1>0$

- μ, σ^2, m_1 are unknown parameters
- This model is a generalization of the logit and probit models currently used in biossay experiments
- $m_1 = 1$ logistic model
- $m_1 < 1$ then $P(death \mid w)$ is negatively skewed

4

- $m_1 > 1$ then $P(death \mid w)$ is positively skewed
- the form of $P(death \mid w)$ approaches the distribution function of an extreme minimum value distribution for $m_1 \to \infty$ and a reflected exponential distribution for $m_1 \to 0$
- MLE with a Newton-Raphson algorithm give $\hat{\mu}=1.818,~\hat{\sigma}=0.16,~\hat{m_1}=.279$
- ullet our goal is to approximate $p(\mu,\sigma,m_1\mid \mathsf{data})$ by implementing a Metropolis Algorithm
- Prior distributions

$$m_1 \sim \mathsf{Gamma}(a_0, b_0) \ \mu \sim N(c_0, d_0) \ \sigma^2 \sim IG(e_0, f_0)$$

• Likelihood-prior

$$\begin{array}{l} p(\mu,\sigma,m_1 \mid {\sf data}) \; \propto \; f({\sf data} \mid \mu,\sigma,m_1) \pi(\mu,\sigma,m_1) \\ \; \propto \; \left\{ \prod_{i=1}^k [h(w_i)]^{y_i} [1-h(w_i)]^{n_i-y_i} \right\} \frac{m_1^{a_0-1}}{\sigma^{2(e0+1)}} \\ \; \times \; \exp \left[-\frac{1}{2} \left(\frac{\mu-c_0}{d_0} \right)^2 - \frac{m_1}{b_0} - \frac{1}{f_0\sigma^2} \right] \end{array}$$

• we make a change of variable to $\theta = (\theta_1, \theta_2, \theta_3) = (\mu, \frac{1}{2} \log \sigma^2, \log r)$ this transform the parameter space in \mathcal{R}^3 and also helps to symmetrize the posterior distribution, our target density is now

 $\begin{array}{l} p(\pmb{\theta} \mid \mathsf{data}) \; \propto \; \left\{ \prod_{i=1}^k [h(w_i)]^{y_i} [1-h(w_i)]^{n_i-y_i} \right\} \exp(a_0\theta_3 - 2e_0\theta_2) \\ \times \; \exp \left[-\frac{1}{2} \left(\frac{\theta_0-c_0}{d_0}\right)^2 - \frac{\exp(\theta_3)}{b_0} - \frac{\exp(-2\theta_2)}{f_0} \right] \end{array}$

- prior specifications
- m_1 : $a_0 = .25$, $b_0 = 4$ so that $E[m_1] = 1$, $std[m_1] = 2$
- μ and σ^2 : $c_0=2,\ d_0=10, e_0=2,\ f_0=1000$ that is $E[\sigma^2]=0.001.\ std[\sigma^2]=.5$
- proposal distribution $N_3(\boldsymbol{\theta}^{(t-1)}, \tilde{\Sigma})$ where

$$\tilde{\Sigma} = diag(.00012, .033, .10)$$

• to accelerate convergence, form the output of the first algorithm get a new estimate of $\tilde{\Sigma}$ as $\frac{1}{N}\sum_{j=1}^N(\pmb{\theta}_j-\bar{\pmb{\theta}})(\pmb{\theta}_j-\bar{\pmb{\theta}})^t$ where j indexes Monte Carlo samples.

6