Aims Markov chain simulation

e Markov Chain e IDEA: to simulate a random walk in the space of 6

e Differences between MC and iterative simulations (IS) which converge to a stationary distribution that is the

o Metropolis algorithm (MA) posterior distribution p(6 | y)

o : o e KEY: to create a Markov process whose stationary
— Bivariate unit normal density with

distribution is p(¢ d the simulation |
bivariate normal jumping kernel istribution is p(f | y) and run the simulation long

] enough that the distribution of the current draws is
— Theoretical concerns about the MA
close enough to the target

e Metropolis Hastings algorithm (MHA)
e Gibbs Sampler (GS)

o the key of the MC's success is that the approximate

distributions are improved at each step in the simu-
e Metropolis within Gibbs lation, in the sense of converging to the target distri-
e Assessing convergence bution, whereas distributions used in the importance

e Adaptive simulation algorithm sampling remains the same
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Differences between MC and IS simulations Metropolis Algorithm (MA)
e In MC, samples are drawn sequentially, with the dis- Given a target distribution p(6 | y) that can be com-
tribution of the sampled draws depending on the last puted up to a normalizing constant, the MA creates
value drawn a sequence of random points 6!, 62, ... whose dis-

e The approximate distributions are improved at each tributions converges to the target distribution. Each

step in the simulation, in the sense of converging to sequence can be considered a random walk whose
the target distribution, whereas distributions used in stationary distribution is p(6 | y).

IS simulations remain the same

e In MC, we draw 6% from a transition distribution
0t ~ Tt(et | 9t—1)

e T} must be constructed so that the Markov chain con-
verge to unique stationary distribution - which is the

target distribution.



Metropolis Algorithm (MA)

the algorithm proceeds as follows
o draw 8" ~ pg(#) — starting value —
efort=1,2,...
1. draw 0% ~ Jy(6* | 61 1)
where the jumping distribution J;(6* | #71) must
be symmetric, i.e. Ji(0q | 0p) = Ji(0p | Op)
2. calculate the importance ratio r = p(6* | y)/
p(0" | y)
3. set 0% = 6* with prob.

e the algorithm requires the ability to calculate r and

to draw 6* from the jumping distribution J(60* | )

Why MA work ?
We want to show that

1. the simulated sequence 91,02,... is a MC with a

“unique” stationary distribution

2. the target distribution is equal to the stationary dis-
tribution
“Understanding the Metropolis-Hastings algorithm”.
Chib and Greenberg, the American Statistician, 49,4,327-335

metropolis example: bivariate normal density with bivariate normal jumping kernel
metropolis_function(theta=c(1,1),mu=c(0,0),Sigma=diag(1,2)){
thetastar_simulate.multnorm(mu,Sigma)  #jumping distribution
Prec_solve(Sigma)

ratio _ exp(-1/2x(t(thetastar-mu )%*)Prec)*)(thetastar-m) -
t (theta-mu) %*%Prec%*% (theta-mu)))
u _ runif (1)

if(u <= ratio) {theta_thetastar}
test_ (u <= ratio)
return(theta)
}
iterate_function(theta0=c(0,0),NN){
theta_matrix(NA,2,NN)
test_NULL
thetal[,1]_thetal
for(n in 2: (NN-1)){
thetal,n]_metropolis(theta=thetal,n-1],mu=c(0,0),Sigma=diag(1,2))}
return(theta)
}

The Metropolis-Hastings algorithm (MHA)

e MHA generalizes MA because the jumping distribu-
tion needs no to be symmetric J;(6; | 6,) # Ji(6. | 65)

e to correct for the asymmetry the ratios of importance
ratios is
_pl0* [ )/ A6 | 9
p(0" =1 | y)/ J(60~1 | 6%)
oif J(6* | 6) = p(6* | y)VO then r = 1 and 6" are a

sequence of independent draws from p(6 | y)




Properties of a good jumping rule
e For any 6 it is easy to sample from J(6* | 6)
e it is easy to calculate the ratio of importance ratios r

e each jump goes a reasonable distance in the parame-

ters space

e the jumps are not rejected too often

e for many problems involving standard statistical mod-
els, it is possible to sample from most or all the con-

ditional distributions of parameters
SAT experiments

Diet measurements
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The Gibbs Sampler
Alternating Conditional Sampling

) Od)

e at each iteration ¢, any sub-vector 6; of 6 is sampled

o0 =(01,...

from the conditional distribution given all the other
components of 6, i.e.
t—1

t—1 _ (pt t t—1
e_j = (9,...,0j_1,...,,9j+1,.

)

e each subvector is then updated conditional on the lat-
est value of 6 for the other components, which are the
iteration ¢ for the components already updated and

the iteration ¢ — 1 values for the others
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Gibbs example: bivariate normal distribution:example pag:328

gibbs_function(thetal=0,theta2=0,y1=0,y2=0,rho=.81){

}

thetal_rnorm(1,yl+rhox(theta2-y2) ,sqrt(1-rho~2))
theta2_rnorm(1,y2+rho* (thetal-y1),sqrt(1-rho~2))
return(thetal,theta2)

gibbs.iterate_function(a=0,b=0,NN){

thetal NULL
theta2 NULL
theta1[1]_a

theta2[1]_b

}

for(n in 2: (NN-1)){
thetal[n]_gibbs(thetal=thetall[n-1],theta2=theta2[n-1],y1=0,
y2=0,rho=.81) $thetal
theta2[n]_gibbs (thetal=thetal[n],theta2=theta2[n-1],y1=0,
y2=0,rho=.81) $theta2
}
return(thetal,theta2)
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Gibbs Sampler (GS) as special case of the MHA

e GS can be viewed as special case of MHA with the
following jumping distribution
t—1 - t—1
JGibbs _ p(@}'-‘ | Gij y) if 9*,j = Q,j

it .
J 0 otherwise

e the only possible jumps are the parameter vectors 6*
that match 62! on all the components other than ;.
e the ratio of importance ratios is

p(0"]y)/ T3 (0716" )
p(gtflly)/(]ﬁibbs(etfl|9*)

p(0*1y) /P05 105 y)

=1
p(0"y)/p(6;16%;"y)
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Metropolis within Gibbs

e if we cannot sample directly from all the full condition-
als distributions p(f; | 6_;,y), we can approximate

them by a metropolis step within the GS, i.e.
* t—1\ ¢ nx _ pt—1

Jis— g(9j | 9_]. ) |f9_j = 9_j

’ 0 otherwise

e the importance ratio, must be computed

e Example...
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hint: p(6* | y) = p(6* | 6"}, )p(6";' | y)
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Assessing convergence
Difficulties:

1. if the iterations are not proceed long enough, the sim-
ulations maybe grossly unrepresentative of the target
distribution relative to an independent sample of the

same size
2. check the convergence of the chain

3. within sequence correlation: simulation inference from
correlated draws is generally less precise than from the

same number of independent draws
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Solutions:
1. discarding early iteration (burnin parameter)

2. monitoring of convergence by simulating multiple se-
quences with starting points dispersed through the

parameter space

3. using every k-th simulation draws (skip parameter)
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Monitoring convergence of each scalar estimands
(cont’s)
e the potential scale reduction is so defined
VR =\Var(y | y)/W

where \/}_?E — 1 as n — oo. This is the factor by

which the scale of the current distribution for ) might

be reduced if the simulation where continued to oo

e calculate \/E for all the scalar estimands and con-
tinue the simulations until \/Ei is near to 1 for all of
them

ehttp://1lib/stat.cmu/S/itsime.

S code that computes both the mean and the upper

95th percentiles of \/E
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Monitoring convergence of each scalar estimands

e simulate J parallel sequences of length n

eestimands ¢; ;, i=1,...,n, j=1,...,J

olet Var(y | y) =21w + 1B

e Var(1) | y) overestimates the marginal posterior vari-
ance assuming the starting distribution is appropri-
ately overdispersed

oB = %Z}Ll(vﬁ] — 1).)> — between sequence
variance.

oW = %Z}'Izl 33’ 3? = o (W — ) —
within sequence variance

oW < Var(i) | y) because the sequences have not
had time to range over all of the target distribution
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Parametrization

e The Gibbs Sampler is most efficient when parameter-

ized in terms of independent components

e Metropolis jumps: in a normal setting, the jumping
kernel should ideally have the same covariance struc-
ture as the target distribution, which can be approxi-
mately calculated based on the normal approximation

at the mode
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Efficient Jumping rules
o0 =(01,...,0y)
]y~ Ny, )
o J(0* | 611y ~ N(6* | 611, %)
e among this class of jumping rules, the most efficient

has scale ¢ ~ 2.4/v/d

e for the multivariate normal distribution, the optimal
jumping rule has acceptance rate .44 in one dimension

and .23 in high dimensions
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(a) Adjust the covariance of the jumping distribution to
be proportional to the posterior covariance matrix
estimated from the simulations

(b) Increase or decrease the scale of the jumping distri-
bution if the acceptance rate of the simulations is

much to high or low, respectively

e the goal is to bring the jumping rule toward the ap-
proximate optimal value between .44 and ,23, depend-

ing on d.
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Adaptive simulation algorithm

e Start the parallel simulations with a fixed algorithm,
such as a version of the Gibbs Sampler, or the Metropo-
lis with a jumping rule shaped like an estimate of the
target distribution (possibly covariance matrix com-

puted at the joint or marginal mode), scaled by a

factor 2.4/+/d

e After some number of simulations, update the Metropo-

lis jumping rule as follows
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METROPOLIS GIBBS-SAMPLER
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Figure 1: Four independent sequences of Metropolis and Gibbs sampler of a N(0,I) and
N (0, .81) with overdispersed starting points indicated by solid squares.
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