Table 1: Observed effects of special preparation on SAT-V scores in eight randomized experiments. Rubin (1981)

School	Estimated treatment effect, y_j	Standard error of effect estimate, σ_j
A	28.39	14.9
В	7.94	10.2
C	-2.75	16.3
D	6.82	11.0
Ε	-0.64	9.4
F	0.63	11.4
G	18.01	10.4
Н	12.16	17.6

BM 140.763 MIDTERM - 02/14/2002 DUE DATE - 02/28/2002

- 1. For each of the following densities provide a conjugate prior distribution for the unknown parameter(s), if one exists:
 - a) $y \sim \text{Binomial}(n, \theta)$, n known
 - b) $y \sim \text{Neg-Bin}(r, \theta)$, r known
 - c) $y \sim \text{Gamma}(\alpha, \beta)$, α known
 - d) $y \sim \mathsf{Gamma}(\alpha, \beta)$, β known
- 2. Suppose your prior distribution for θ , the proportion of Californians who support the death penalty, is Beta with mean 0.6 and standard deviation 0.3.
 - (a) Determine the parameters α and β for your prior distribution. Sketch the prior density frunction;
 - (b) a random sample of 1000 Calfornians is taken, and 65% support the death penalty. What are the posterior mean and variance for θ ? Draw the posterior density function.
- 3. Data analysis of the SAT coaching example.
 - (a) Let y_j be the estimated coaching effects and let σ_j^2 the corresponding standard error for school j as summarized in the Table. We assume $y_j \sim N(\theta_j, \sigma_j^2), \ j=1,\ldots,J$.
 - (b) implement a classical random-effects analysis of variance of the SAT coaching data, and estimate θ_i for $i=1,\ldots,8$;
 - (c) elicit a prior distribution for μ and τ^2 and perform a fully Bayesian analysis of the following hierarchical model

$$y_j \sim N(\theta_j, \sigma_j^2)$$

 $\theta_j \sim N(\mu, \tau^2);$

you can use direct simulation or Gibbs sampling

- (d) use the posterior simulations to estimate (i) for each school j, the probability that its coaching program is the best of the eight; and (ii) for each pair of schools, j and k, the probability that the coaching program in school j in better than in school k:
- (e) repeat (a) but for $\tau = \infty$ (that is, separately estimation for the eight schools). In this case, the probabilities (ii) can be computed analytically;

- (f) discuss how the answers in (d) and (e) differ;
- (g) pick one school and investigate the sensitivity of the posterior probability that its coaching program is the best of the eight schools under 2 alternative prior specifications for τ^2 .