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The R Project
for Statistical Computing

http://www.r-project.org/

• R is a language and environment for
statistical computing and graphics.

• R, like S, is designed around a computer language,
and it allows users to add additional functionality by
defining new functions.

• The term "environment" is intended to characterize
it as a fully planned and coherent system, rather
than an incremental accretion of very specific and
inflexible tools.
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• It is a GNU project which is similar to the S
language and environment.

• The GNU Project was launched in 1984 to develop
a complete Unix-like operating system which is free
software.

• Free software is a matter of the users’ freedom to
run, copy, distribute, study, change and improve the
software. It is not a matter of price!

• R can be considered as a different
implementation of S. There are some important
differences, but much code written for S runs unaltered
under R.
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ONE-DIMENSIONAL parameter models

1. The Binomial model and its coniugate Beta
prior

in Bin(n, θ) there is a single parameter of interest

(n is tipically assumed known), that is the probability θ

of a certain outcome in each of the n trials con-

sidered.
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Bayesian estimation of a probability from
BINOMIAL data

Gelman book, pag. 39, sec. 2.5
R code placenta.r is in the Lab notes at the course web
page

• Our interest focus on the proportion of female births in
the so called maternal condition placenta previa

• Our data consist in a early study in Germany: 437
females on 980 placenta previa births

• How much evidence do they provide that the
proportion of placenta previa female births is < 0.485,
the proportion of the general population female births?
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Analysis using a UNIFORM PRIOR

• Let the 1-parameter θ denote the proportion
of placenta previa female births

• We assume a Bin(θ, 980) ∝ θ437 (1− θ)980−437

to be the model generating the data
• We specify the prior for θ to be a U [0, 1]

• The posterior for θ is, then,
∝ θ437 (1− θ)980−437, i.e., is a
Beta(437 + 1, 980− 437 + 1)
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Analysis using different BETA PRIORS

As the likelihood p(y|θ) ≡ L(θ; y) is ∝ θy (1− θ)n−y

if the prior is of the same form, e.g., p(θ) is ∝

θα−1 (1− θ)β−1

then the posterior will also be of this form. In fact, p(θ|y) is

∝ θy+α−1 (1− θ)n−y+β−1 = Beta(α + y, β + n− y)

-> the BETA prior distribution is a coniugate family for
the BINOMIAL likelihood
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How does posterior COMPROMISE between
prior and the data?

• The compromise depends on how much
weight prior has (or how much informative it
is) w.r.t. the data at hand

• i.e., in the binomial case, depends on the
relative weight of

α + β − 2
≈ number of prior observations (∼ prior
precision)
Note: precision=1/variance, var= θ(1−θ)

α+β+1

w.r.t. n, the sample size

Bayesian Methods – p.10/20



How does posterior COMPROMISE between
prior and the data?

• The compromise depends on how much
weight prior has (or how much informative it
is) w.r.t. the data at hand

• i.e., in the binomial case, depends on the
relative weight of

α + β − 2
≈ number of prior observations (∼ prior
precision)
Note: precision=1/variance, var= θ(1−θ)

α+β+1

w.r.t. n, the sample size

Bayesian Methods – p.10/20



A first SENSITIVITY ANALYSIS

concept of sensitivity: sensitivity or robustness of the
inferences to the choice of the prior

Prior information Posterior information

α + β − 2 mean mean 95% interval

0 0.500 0.446 [ 0.415 , 0.477 ]

0 0.485 0.446 [ 0.415 , 0.477 ]

10 0.485 0.446 [ 0.416 , 0.477 ]

100 0.485 0.450 [ 0.420 , 0.479 ]

1000 0.485 0.466 [ 0.444 , 0.488 ]

10000 0.485 0.482 [ 0.472 , 0.491 ]

NOTE: in placenta previa example n ≈ 1000 and ȳ = 0.446
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The SIMULATION-based estimation ap-
proach

• The modern approach to Bayesian estimation
has become closely linked to simulation-based
estimation methods.

• In fact, Bayesian estimation focuses on
estimating the entire density of a parameter.

• This density estimation is based on
generating samples from the posterior density
of the parameters themselves or of functions
of parameters.
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• In the BETA-BINOMIAL model, the coniugacy
allows us knowing the posterior density in
closed form.

• Then, direct calculations are feasible or direct
simulation from it can be performed.

• However, even if posterior density cannot be
explicitly integrated, iterative simulation
methods (or MCMC) are alternatively used.
We will see them in future lab’s.
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a first (direct) simulation
Congdon book, pag. 31, sec. 2.11

• Wilcox (1996) presents data from a 1991 gallup
opinion poll about the morality of President Bush’s not
helping Iraqi rebel groups after the formal end of the
gulf war. Of the 751 adults responding, 150 thought
the president’s actions were not moral.

• We are interested in assessing the probability that a
randomly sampled adult would respond ‘immoral’.

• In the inference we might use evidence from previous
polls on the proportion of the population generally
likely to consider a President’s actions immoral.
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a first (direct) simulation
The R code is in betabin.r at the course web page

• We present Bayesian inference about the probability of
an adult responding ‘immoral’ assuming different Beta
priors:

1. α = β = 1 prior information ∼ 0 E = 1/2

2. α = β = 0.001 prior information < 0 E = 1/2

3. α = 1 β = 0.11 prior information < 0 E = 0.9

4. α = 1.8 β = 0.2 prior information ∼ 0 E = 0.9

5. α = 4.5, 45 β = 0.5, 5 prior information ∼ 5,50
E = 0.9
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1., 2. are both non informative, but 2. is a reasonable choice for

‘one-off’ events (or for correlated data) 3., 4. may be assumed on the

basis of previous polls. Although E=0.9 they still are diffuse. 5., 6 are

increasingly informative.
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Legend for the next figure –>

in each figure:

• curves: histogram of 10,000 draws from the posterior
Beta(150+α,601+β); likelihood ∝ Bin(150,751).
intervals: Unif-Bin 95% posterior interval; 95%
(Beta(150+α,601+β)) posterior interval; Normal
approximation of the 95% posterior interval; Inverted
95% posterior interval on the logit scale.

• Though θ is close to 0, because of the large sample
size (751), the normal approximation is good as well as
posterior inferences are insensitive to prior choice
(even if discordant to data), at least for prior information
≤ 0.
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And what about if our sample size was only

n = 5, with y = 1 adults considering
immoral the President’s actions? ->

NOTE: the empirical mean still is y/n = 0.2
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