Transition Models

e Extension to GLM for describing the conditional dis-

GLM Markov Models: Inference

o Maximum Likelihood

tribution of Y;; conditional to ¥;1,... ,Y;; 1 and co- e GEE

variates ;
e We consider the case where observation ¢;; are equally

spaced

Markov Models
Model conditional distribution of each response given
past responses and covariates
9(E(Yij) | Yij—1,--- i1, wij) = function of
Yig—1y -+ 1 Yily Tij
treat past responses like additional predictors
Markov Models: Examples Potential Applications
e Linear Regression 0 Pre-clinical stage
1T 1
E(Yjj | Pastjj) = z;; + aj(yij—1 — wij-10) Lyj=_ O grade

a; = exp(—¢ | tij — tij—1|)
e Logistic Regression
logit Pr(Y;; = 1 | Past;j) = x;;8 + ay;; 1
e Log-Linear Regression
log E(Yj; | Pastjj) = ;8 + allogyy; 1 — wij—10)
?/;kj_l = max(c, ?/ij—l)a c>0

2 Tumor grade 2
3 Tumor grade 3
Study the efficacy of a new treatment protocol for

slowing rate of progression

Model Pr(Yj; | yij—1,%i;)

2.y;j = $s earned by HMO in year j

Wall street bankers want to predict earnings for the

next year

Model E(Yij | yij—1,--- » i1, %ij)




Transition Model for Binary Responses
o logit P(Y;j | Pastij) = mijﬂ + ayj—1
the change of respiratory infection at time ¢;; depends

on explanatory variables but also on whether or not

the child had infection 3 months earlier

(3 = change X unit change in x in the log odds of
infection, among children whit outcome y;; 1 at the
prior visit

a exp(m;j,@Jra)

exp(x;;3)

among children who did and did not have infection at

oc = ratio of the odds of infection

the prior visit

Regression Models for transition Probabilities

logit Pr(Y;; =1 yij_1) = ;8 + yij—1%i;0

Yij—1 Coef
0 B
1 [B+96

Transition Models for Binary Data:

equally spaced data
First Order Markov Chain

Transition Matrix: records the probabilities of making
each of the possible transitions from one visit to the next
Yij
0 1
0mo 7o

Yij—1
1 my T

emiy = Pr(Yy =1]yj-1=1)
e mo=Pr(Y;j =1]y;j—1=0) trans. prob.
o Ty = Pr(Yyj = a | yj—1 =)
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Second Order Markov Models
Yij

Yij—2 Yij—1 O 1
0 0 moo  moo1
0 L mi  mou
1 0 mo 7101
1 I mie mu
As one Regression

logit Pr(Y;; = 1| yij—1, Yij—2, Tij) =

T30 + 01Yi5—1%i5 + 02Yij—2%ij + 03Yij—1Yij—2%ij




Yij—2 Yij—1 Coefs
0 0 38
0 1 B+6
10 B+ 6y
1 1 B46+06y+6

o Therefore xerophthalmia effect is similar for Y;;_; = 0 and

Y;j—1 =1 even though Y;;_; is a strong predictor.
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Indonesian children’s study example

o Table 10.1 summarizes the number of transitions from respiratory
disease status Yj;_; to disease status Yj;. These rates estimate
the transition probabilities P(Y;; | Y;;-1)

o Table 10.2 shows a cross tabulation of respiratory disease Yj;

against xerophthalmia status ;;

frequency of respiratory infection is 1.49 = .119/0.080 times as
high among children who are vitamin A deficient.

® There is correlation among repeated measurement on the same
child. We can control for this by examining the effect of vitamin
A deficiency separately for transitions starting with Y;;_; = 0 or
Yij—1 =1 (table 10.3)

o Among children free of infection at the prior visit, the frequency
of respiratory disease is 1.44 = 0.108/0.075 times higher if the

child has xerophthalmia.

o Among children who suffered of infection at the prior visit, the
xerophthalmia relative risk is 1.54 = 0.200/0.130
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Statistical Model

logitPr(Yi; = 1| Y1 = yij_1) = -’17;],@ + ayij-1
o Results are in table 10.4 (GEE)

e a comparison between table 10.2 and table 10.3 indicates that
the association of xerophthalmia and respiratory infection is sim-
ilar for children who did and did not have respiratory infection
at the previous visit. This is confirmed by the xerophthalmia-by-
previous-infection interaction term in model 2 (.11 and 95% Cl
(—2.1,2.3)

e Having controlled for age, season and respiratory infection at
the prior visit, there is a mild evidence in these data for an

association between xerophthalmia and respiratory infection; the
xerophthalmia coeff is 0.78(0.53).

o Finally, with transition models, you must check whether the re-
gression inference about B change with the model for time de-
pendence, so we add Y;;_ as predictor
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o the inclusion of Y;;_s reduce s the influence of season and Y;;_;

and increases the xerophthalmia coefficient to 1.73

o If the first order Markov assumption is valid, then the standard

errors are valid

® Robust standard errors have a valid coverage in large sample size

even when the Markov assumption is incorrect

e A simple check of the Markov assumption is to compare model

based standard erros versus robust standard errors

Conclusion

o |n transition models, explanatory variables and previous responses

are treated symmetrically as predictors of the current response.

® Hence, as the time dependence model changes, so might infer-

ences about explanatory variables

o sensitivity of inferences with respect to time dependence assump-

tions.




