Exploring Data Analysis
e Exploratory analysis: detective work
e Confirmatory analysis: judicial work

@ show as much as of the relevant data as possible rather

than only data summaries

e highlight aggregate patterns of potential scientific in-

terest

e identify both cross-sectional and longitudinal patterns

as in example 1.1

e make easy identification of unusual people or unusual

observations

if YOU can’t see it, DON’'T believe it!

Displays of the responses against time
e Scatterplot of the response variable against time

e example of the 48 pigs (weights versus time)

Displays of the responses against a covariate

e CD4 + example: depressive symptoms (CESD score)

versus capacity of immune response

Appropriate EDA techniques
e Lines plots (spaghetti plot)
e Average and distribution plots (boxplot, quantiles)
e Empirical covariance
e Residual “pairs” plot

e Variogram

ZAP-plot

1. regress y;; on t;; and get the residuals r;;

2. choose one dimensional summary of the residuals, for

example g; = median(r;1, ..., 7, )

3. plot r;; versus t;; using points
4. order units by g;

5. add lines for selected quantiles of g;



Graphical methods to separate CS information

from LS information

o Vij = Bewin+Br(wij—zi)+e€j, 1 =1,...,m, j =
1,...,n
this model implies two facts:

1.Y;1 =Bexj1 + €1, t=1,....,m

2.Yij — Y = Br(zij —za) + €5 — €1
this suggest making two scatterplots

1.y;1 against ;1 fori =1,...,m

2.y;5 — yi1 against x;; — x4y fori =1,...,m, j =
1,...,n

Kernel estimation:
e selection of window centered at time ¢;

e /i(t) is the average of Y values of all points which are

visible in that window

e to obtain an estimator of the smooth curve at every
time, slide a window from the extreme left to the
extreme right, calculating the average of the points

within the window every time

e weighting function that changes smoothly with time
and gives weights to the observations closer to .

Gaussian kernel K (u) = exp(0.5u?)

Fitting smooth curves to longitudinal data

Non parametric regression models that can be used
to estimate the mean response profile as a function of
time

e Data (y;,t;), i=1,...,m

e we want to estimate an unknown mean response curve
(4(t) in the underlying model

Y; = p(ti) + €
e Kernel estimation
e Smoothing Spline

e Loess

¢ Smoothing spline:

e Is the function s(t) which minimizes the criterion
J) = 3 {yi = s(8)} + A [ s (8) %t

e 5(t) satisfy the criterion if and only if is a piece-wise
cubic polynomial

e Loess:

1. center a window at time ¢;

2. fit weighted least squares

3. calculate the residuals (vertical distance from the fit-
ted line to each point in the window)

e down weight the outliers and repeat 1,2,3 many times

o the result is a fitted line that is insensitive to the ob-

servations with outlying Y values
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Exploring correlation structure
® Regress y;; on z;; to obtain residuals
Tig = Yig — B-Tij
e with data collected at fixed numbers of equally spaced

points, correlation can be studied using scatterplot

matrix in which r;; is plotted against r;;, for j < k.

e Def: if residuals have constant mean and variance and
if corr(y;, y;1) depends only on | t;; —t;; | then the

process Y;; is said to be weakly stationary

e Scatterplot matrix of CD4+ residuals

Autocorrelation function

e Autocorrelation function is most effective for studying

equally spaced data that are roughly stationary

e Autocorrelations are more difficult to estimate with
irregularly spaced data unless we round observations

times as was done for the CD4 data

11

Autocorrelation function

e Assuming stationarity, a single correlation estimate
can be obtained for each distinct values of the time
separation or lag u =| t;; —t;;, |. This corresponds to
pooling observations pairs along the diagonals of the

scatterplot matrix.
e p(u) = Corr(Yij, Yij—u)
e standard error of p(u) is roughly 1/v/N where N is

the number of independent pairs of observations in

the calculation.

e The autocorrelation function is most effective for study-

ing equally spaced data that are roughly stationary.
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Variogram
An alternative function describing associations among
repeated observations with irregular observation times is

the Variogram so defined:
1
V) = 5B [{Y (1) =Yt —w}?|, u>0

e If Y(t) is stationary, the Variogram is directly related

to the autocorrelation function p(u), by

v(u) = {1~ p(u)}

2 is the variance of Y.

where o
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Computation of Sample Variogram

o Starting with the residuals 7;; and the time ¢;;, compute all
possible

1 2
Uijk = §(rij_7'ik) and
WUijk = tij —ti for j <k
e Now smooth v;;;; against u;;i (using lowess)

o Estimate the total variance as

. 1 _
02:—N71 4 (Tij_r)z
vy
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A General Serial Covariance Model

Diggle (1988) proposed the following model
Yij = XiiB + a; + Wiltij) + €5
This model contained three sources of variation:
random intercept Q;
Wi(ti5)

measurement error G,L'j

serial process

If we further assume

var(a;) =%
cov(W(s), W(t)) = p(| s —t])
var(€;j) = 72

Then we can use the Variogram to characterize these

variance components
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Example on the Protein Content of Milk

e First, compute residuals, allowing for a different mean for each
time and diet

e The overall variance of the residuals is 0.29422 = (.087
® There are 19 time points, so there are 18 lags

e Note: the horozontal line is 62
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Figure 3.5: Running mean residuals
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Figure 3.10: Running Mean

“Quantiles”
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