Parametric Models for covariance structure Parametric Models for covariance matrices

We consider the General Linear Model for correlated data, ElY] = Xp
but assume that the covariance structure of the sequence of Var(Y) = V(a)
measurements on each unit is to be specified by the values of We considered two examples:
unknown parameters 1. Uniform correlation model
e Parametric modelling approach very useful for data in which the eij = Ui+ Zij, Zij ~ N(0, 02)

measurements on different units are not made at a common set _ _
2. Exponential correlation model

e; = Wi
Wi; = pWij-1+ Zij, Zij ~ N(0,0?)

of times

oY, = (Y,...,Yin)

ot = (tn, .. tim,)

oY =(Y,...,Yy)
ot=(t1,...,t,), N=>1"n,

In these cases a = c(0?, p)

We now consider more general models for the covariance matrix

V(ax) which can be specified by looking at the variogram.

Interpretation of the Variogram Interpretation of the Variogram

Diggle (1988) proposed the following model e the subject-specific intercept U; expresses the degree to which

Y = XiiB + U + Witi;) + Zij all observations on the same subject are similar, U; is a subject
. . . “trait” variable, and v/? is the between-subject variance
This model contained three sources of variation:
random intercept U o Wi(t;;) is the serial process an within-subject variance
serial process Wi(ti;) e Z;; is the measurement error (noise)

measurement error  Z;;

If we further assume

var(U;) =12
cov(W(s), W(t)) = p(l s —1])
var(Z;;) =72

Then we can use the Variogram to characterize these variance com-

ponents



Example on the Protein Content of Milk Variogram of protrs (L7 percent of v_ijk's excluded)

Consider the mean model

E(Y;]) = ﬁ() + 61mixedi + ,ngarleyl- + a;

where «; is a factor for time j

e First, compute residuals, allowing for a different mean for each

v_ijk

time and diet 05
e The overall variance of the residuals is 0.29422 = (0.087

® There are 19 time points, so there are 18 lags
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e Note: the horizontal line is &

o

e Looking at the variogram there is evidence of: 0

serial correlation (the variogramis increasing with lag)

random intercept (the variogram does not start at zero) Recall that the sample variogram with a bandwidth of 0.7 was

measurement error (the variogram does not reach the total This was generated by stata code

variance 62
5 6
. use Ccows Parametric Models for covariance structure
. * Compute residuals, removing effects of diet and time 1. Serial correlation:

. sort diet week
eij = Wi(tij)
. by diet week : egen protmn=mean(prot) . .
v gen p P 2. Serial correlation + measurement error:
. gen protrs = prot - protmn
gen p P P €ij = Wiltij) + Zij
. sort id week
3. Random intercept + measurement error:
. * Compure smooth lowess variogram with
bandwidth 0.7 € = Uio + Zij
. variogram protrs , bw(0.7) incl(1.3)
4. Random intercept + random slope + meas. error:

€ij = Uio + Untij + Z;;
5. Random intercept + serial correlation + meas. error:

€ij = Uio + Wiltij) + Zij



Models
To develop a model we need to understand the sources of varia-

tions
e Random effects: stochastic variation between units
e Serial correlation: time-varying stochastic process within an
unit
e Measurement error: measurement process introduces a com-

ponent of random variation (sampling within units)

Serial Correlation: Example
o corr(Wi(t1), Wi(ta)) = p| ti — tia |
VVZ(t”) ~ N(O, O'ZHi)

1 €*0|ti1*ti2| . efeltilftinl

H; = 1
1

t = (-1,0,2,20), 6 =.2

1 .82 .55 .015

1 .67 .
" - 67 .018
1 .027

1
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How do we incorporate these qualitative features into
specific models?

1. Make explicit separation between mean and covariance structures

as
Y=XB+¢€

It follows that
e~ MVN(0,V(t,a))

+ VVZ(t”) + AT
~—L
meas error

/
€5 = dijUi
— -
random effects serial corr

For example: d;jUZv = Uy + Uityj

10

Serial Correlation
Gij = W(tij); Var(ei) = O'QHZ'

o Var(e;j) = o2

o Cov(eij, €ir) = a2p(| tij — tix |)

o variogram y(u) = 0*(1 — p(u)), ¥(0) =0

e three popular choices of p(u) are:

1. the exponential correlation model p(u) = e~#*
2. the Gaussian correlation model p(u) = e~ %’

3. first order autoregressive model p(u) = e~ 9lti—*i-1l

12



Model-fitting
1. Formulation - choosing the general form of the model;
a) Mean
b) Association
2. Estimation - fit the model
a) Weighted least squares for 3
b) ML for covariance parameters c or subset
c) Iterate a) and b) to converge

3. Inference - calculating confidence intervals or testing hypothe-

ses about parameters of interest
4. Diagnostic - checking that the model fits the data

Examine residuals for lack of fit, correlation
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Estimation

1. Unknown parameters are: 3, o and o2

2. Given a, find REML estimates of 3 and o2
Bla), 6*(a)
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Formulation
e Formulation of the model is a continuation of exploratory data
analysis
e Focus on the mean and covariance structure
1. Look at the residuals
2. Do time plots, scatterplot matrices and empirical variogram plots

3. Do you have stationarity? If not.. you need to transform the data
or use inherently non-stationary model as the random effects
model.

4. Once the stationarity has been achieved, use empirical variogram

to estimate the underlying covariance structure.
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Diagnostic
AIM: compare the data with the fitted model
1. Superimpose the fitted mean response profiles on a time plot
of the average observed responses within each combination of

treatment and times

2. Superimpose the fitted variogram on a plot of the empirical var-

iogram

16



Examples and Summary
Nepal Data set
This data contains anthropologic measurements on Nepalease
children. The study design called for collecting measurements on
2258 kids at 5 time points, spaced approximately 4 months a part.
e Scientific question: estimate association between arm circumfer-

ence and child’'s weight taking into account of the correlation

e Model for the mean:

Elarm;] = B + fiwti; + 523gej + Bssex; + €
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Indipendence
® One very simple model is to set p;; = 0 and calculate OLS

. regress arm Wt age sex

<snip>
arm | Coef. Std. Err. t P>|t] [95% Conf. Intervall
wt | .4978829 .016785 29.66 0.000 .4649392 .5308266
age | -.0395428 .0026665 -14.83 0.000 —-.0447763 -.0343092
sex | .2410595 .0473892 5.09 0.000 .1480494 .3340697
_cons | 9.545213 .1392856 68.53 0.000 9.27184 9.818587

o Interpretation of /3; = 0.498, estimated coefficient of weight:

e While the independence correlation model is most likely wrong,

the (s are still valid estimates (but not very good ones!)

e The standard errors, however, are wrong (and so, therefore, is
the rest of the table!) (the actual s.e. of 3 is more like 0.037)
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e Models for the covariance matrix:
Indipendence model:
€5 = Zi]', COI’I’(Zij, Zij') =0
Uniform:
€ij = U; + QZ}j
Exponential:
cij = Wi+ 2
Wij = pWij1 + Zij
Uniform + Exponential:
6,‘]' = Uz + VVZ'J' + Zij
Wij = pWij—1+ Zi;
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Exchangeable Correlation Model
A better model is to assume p;; = p (same for all pairs of observa-

tions). This is called the uniform, exchangeable or compound
symmetry correlation model. In stata:

. xtreg arm wt age sex , re

<snip>
arm | Coef. Std. Err. Z P>|z]| [95% Conf. Intervall
wt | .6572958 .0231161 28.43 0.000 .6119891 .7026024
age | -.0588112 .0036029 -16.32 0.000 -.0658728 -.0517496
sex | .2900758 .0928129 3.13 0.002 .1081658 .4719857
_cons | 8.419315 .2176118 38.69 0.000 7.992804 8.845826
sigma_u | .60715091
sigma_e | .35223707
rho | .74818317 (fraction of variance due to u_i)

e |nterpretation of Bl = (.657 is the same as in the independence

model

o This is a much better estimate because we have made some

attempt to account for the correlation in the repeated measures

20



® The estimated within-subject correlation coefficient is §p =
0.748 which denotes the correlation between two arm circumfer-

ence measures on the same child.

e This estimate excludes any similarities in arm circumference due
to weight, age or sex. i.e., p is adjusted for weight, age and

Ssex.

e Furthermore, if the correlation model is (approximately) correct,
the standard errors are also (approximately) correct
e How does this model arise? Suppose that
€ij = U; + Zij
where U; ~ N(0,v2), Z;j ~ N(0,7%) and the U;'s and Z;;'s
are all independent of one another
Then:
var(€;;) =247

cov(eij, €ir) = pr?

2

p = 2
e The U; allows each child to have his/her own intercept 5y + U;,
and the term U; is called a random effect
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Exponential Correlation Model
A different model is to assume that the correlation of observations
closer together in time is larger than that of observations farther

apart

e One model for this is the exponential or AR (1) correlation

model

ti—t
ij — p‘] H
e A fit of this model is available in stata:

. prais arm wt age sex

<snip>
arm | Coef. Std. Err. t P>[t] [95% Conf. Intervall
wt | .6724654 .024466 27.49 0.000 .6244464 .7204844
age | -.0615307 .0041314 -14.89 0.000 -.0696393 —.0534221
sex | .303858 .0939725 3.23 0.001 .1194196 .4882965
_cons | 8.311044 .2259521 36.78 0.000 7.867571 8.754517
rho | . 8287446

e Again, the interpretation of /5’1 = 0.672 is the same as in the

independence model, and it is a valid estimate

23

e |n this model, the estimates are
var(U;) = ©* = 0.60715% = 0.369

and
var(Z;j) = * = 0.35224% = 0.124
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e If the exponential correlation model is correct, standard errors

will also be correct

e The estimated within-subject correlation coefficient for two

observations separated by 4 months is
corr(€ij, €.j-1) = p = 0.829
(again, adjusted for weight, age and sex)
® How does this model arise? Suppose that €;; = W;;, and
Wi; = pWij_1+ Zij

where Z;; ~ N{(0,0%(1 — p*)} are all independent of one an-
other

e This is sometimes called a first order autoregressive (AR(1))
model and it allows each subject’s error term ¢;; at a given time

to be a function of his error term ¢; ;_; at the previous time

24



Exchangeable plus Exponential

e Suppose that:
Eij = l]; + L@Qj + éZ;j
Wij = pWij1+ Zij
e The U; provides for a subject-specific intercept
e The W;; provide for an autoregressive error structure
e This will induce a new correlation structure
o If we fit this model, we get:

. Xtregar arm wt age sex

<snip>
arm | Coef. Std. Err. zZ P>|z| [95% Conf. Intervall]
wt | . 6446496 .0229793 28.05 0.000 .5996109 .6896882
age | -.0574427 .0036364 -15.80 0.000 -.0645698 -.0503155
sex | .2832056 .087249 3.25 0.001 .1122007 .4542105
_cons | 8.514987 .2113676 40.29 0.000 8.100714 8.92926
rho_ar | .18543604 (estimated autocorrelation coefficient)
sigma_u | .57772352
sigma_e | .38673782
rho_fov | .69055107 (fraction of variance due to u_i)
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In summary

e Modelling the correlation in longitudinal data is important to be

able to obtain correct inferences on regression coefficients (3)

— statistical efficiency

— correct standard errors

® These are marginal models because the interpretation of the

regression coefficients is the same as that in cross-sectional data

— Exchangeable correlation model: subject-specific formulation

— Exponential correlation model: transition model formulation
o Three basic elements of correlation structure

—random effects
— autocorrelation or serial dependence

— observation-level noise, measurement error
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In summary
e Indipendence model: 3; = 0.497 and se = 0.0167
e Uniform model: 3, = 0.657 and se = 0.0231 and p=0.748

e Exponential model: 3; = 0.672 and se = 0.0244 and p,, =
0.8287

e Uniform + Exponential model: 3; = 0.644 and se = 0.0229 and
p=0.69 and g, = 0.185

e We see that the exchangeable correlation (0.691) is similar to
the model without the exponential correlation (0.748), and the

exponential correlation (0.185) is now much smaller

e The regression parameter estimates are also similar to the ex-

changeable case

e This suggests that the exchangeable correlation model may be

capturing the main correlation pattern here
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Evaluating Covariance Models

e Once you have chosen a (set of) covariance model(s), how do
you evaluate whether it fits the data well, or how do you compare
several of them?

e Several tools, and each work with either ML or ReML

LRTs for comparing nested models
Akaike's Information Criterion

Examining fitted model variograms

28



Comparing Covariance Models with
Akaike’s Information Criterion (AIC)

e Useful for comparing several models when some of them may
not be nested within others

e In the study of arm circumference of Nepalese children, we con-

sidered three covariance models, and obtained three values of
2L = 2log(l):

— Exponential plus exchangeable: 2L = —1208.6
— Exponential only: 2L = —1301.6
— Exchangeable only: 21 = —1213.7

e We can compare the simpler models to exponential plus ex-
changeable via LRT, but what about choosing among the three?

e To compare all three, use
AIC = =2(L — q)

where ¢ = the number of parameters in the covariance model

Then, pick the one with the smallest AIC
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e The idea is to penalize for using more parameters, hence the —¢q
e For the Nepalese children, the three AlCs based on ML are:

— Exponential plus exchangeable: AIC =

— Exponential only: AIC =

— Exchangeable only: AIC =

from which we would conclude that the exchangeable only is defi-

nitely better than the exponential only, but that the exchangeable
plus exponential is the best
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