Generalized Linear Models for Longitudinal Data

- Generalized Linear Models: A Review
- The Logistic regression model
 Marginal model
 Random effects model

Transition Model

• Contrasting Approaches

Note for GLMs

- ullet var Y_i may be a function of μ_i
- Logistic: $\mathrm{var}Y_i = \mu_i(1-\mu_i)$
- Poisson: $\mathsf{var} Y_i = \mu_i$

Logistic regression model

- Marginal Logistic Regression Model
- Logistic Model with Random Effects
- Transition Logistic Model

GLM examples

• Linear regression

$$\mu_i = \mathbf{X}_i \boldsymbol{\beta}; \ g(\mu_i) = \mu_i$$

 $Y_i \sim N(\mu_i, \sigma^2)$

• Logistic regression

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \boldsymbol{X}_i\boldsymbol{\beta}; \ g(\mu_i) = \log\left(\frac{\mu_i}{1-\mu_i}\right)$$

$$Y_i \sim \mathsf{Bernoulli}(\mu_i)$$

• Poisson regression

$$\log \mu_i = \boldsymbol{X}_i \boldsymbol{\beta}; \ g(\mu_i) = \log \mu_i$$

$$Y_i \sim \mathsf{Poisson}(\mu_i)$$

2

Marginal Logistic regression model

- ullet Goal: to assess the dependence of respiratory infection on vitamin A status in the Indonesian Children's Health Study
- $ullet x_{ij} = 1$ if child i is vitamin A deficient at visit j
- $ullet y_{ij}=1$ child i has respiratory infection at visit j
- $\bullet \,\mu_{ij} = E(Y_{ij}) = P(Y_{ij} = 1)$
- $logit \mu_{ij} = \beta_0 + \beta_1 x_{ij}$
- $\bullet P(Y_{ij} = 1) = \frac{\exp(\beta_0 + \beta_1 x_{ij})}{1 + \exp(\beta_0 + \beta_1 x_{ij})}$
- $\bullet var(Y_{ij}) = \mu_{ij}(1 \mu_{ij})$
- $\bullet corr(Y_{ij}, Y_{ik}) = \alpha$

3

Parameter Interpretation

- $\frac{\exp(\beta_0)}{1+\exp(\beta_0)} = P(Y_{ij} = 1 \mid x_{ij} = 0)$ frequency of infected children among the subpopulation that is **not** vitamin A deficiency
- $\frac{\exp(\beta_0+\beta_1)}{1+\exp(\beta_0+\beta_1)}=P(Y_{ij}=1\mid x_{ij}=1)=$ frequency of infected children among the subpopulation that is vitamin A deficiency
- $e^{\beta_0} = \frac{P(Y_{ij}=1|x_{ij}=0)}{Pr(Y_{ij}=0|x_{ij}=0)}$ ratio (odds) of the frequency of infected to uninfected children among the subpopulation that **is not** vitamin A deficiency
- $e^{\beta_0+\beta_1}=\frac{P(Y_{ij}=1|x_{ij}=1)}{Pr(Y_{ij}=0|x_{ij}=1)}$ ratio (odds) of the frequency of infected to uninfected children among the subpopulation that is vitamin A deficiency
- ullet $e^{eta_1}=rac{\exp(eta_0+eta_1)}{\exp(eta_0)}=$ odds of infection among vitamin A deficient children divided by the odds among children replete with vitamin A

Correlation between binary outcomes

- 1. $\operatorname{corr}(Y_{ij}, Y_{ik}) = \alpha$
- 2. better to model association among binary data using the odds ratio

$$OR(Y_{ij}, Y_{ik}) = \frac{P(Y_{ij}=1, Y_{ik}=1)P(Y_{ij}=0, Y_{ik}=0)}{P(Y_{ij}=1, Y_{ik}=0)P(Y_{ij}=0, Y_{ik}=1)}$$

Logistic Model with Random Effects

- We assume that the propensity for respiratory infection varies across children, reflecting their different genetic predispositions and unmeasured influences of environmental factors
- ullet We assume that each child has his/her own propensity for respiratory disease $eta_0^* + U_i$ but that the effect of vitamin A deficient eta_1^* on this probability is the same for every child

$$\begin{array}{ll} \mathsf{logit} P(Y_{ij} = 1 \mid U_i) \ = \ (\beta_0^* + U_i) + \beta_1^* x_{ij} \\ U_i & \sim \ N(0, v^2) \end{array}$$

- ullet Given i, we further assume that the repeated observations for the i-th child are independent of one another
- $\beta_0^* = log\text{-}odds$ of respiratory infection for a typical child with random effect $U_i = 0$

• $\exp(\beta_1^*) = odds$ of infection for a child – with random effect U_i when he/she is vitamin A deficient relative to when the same child is not

$$\exp(\beta_1^*) = \frac{\exp(\beta_0^* + U_i + \beta_1^*)}{\exp(\beta_0^* + U_i)}$$
$$= \frac{P(Y_{ij} = 1 | U_i, x_{ij} = 1) / P(Y_{ij} = 0 | U_i, x_{ij} = 1)}{P(Y_{ij} = 1 | U_i, x_{ij} = 0) / P(Y_{ij} = 0 | U_i, x_{ij} = 0)}$$

 $ullet v^2 =$ degree of heterogeneity across children in the propensity of disease, not attributable to x

RE models: basic ideas

- There is a natural heterogeneity across individuals in their regression coefficients and that this heterogeneity can be explained by a probability distribution
- RE model most useful when the objective is to make inference about individuals rather than population average
- β_1^* represents the effects of the explanatory variables on an individual child's chance of infection
- this is in contrast with the marginal model coefficients which describe the effect of explanatory variable on the population average

Parameter Interpretation of a Logistic Regression Model with Random Effects

•
$$logit P(Y_{ij} = 1 \mid U_i, x_{ij} = 1) = \beta_0^* + U_i + \beta_1^*$$

$$\bullet \ \mathsf{logit} P(Y_{ij} = 1 \mid U_i, x_{ij} = 0) = \beta_0^\star + U_i$$

•
$$Od(U_i, x_{ij} = 1) = \frac{P(Y_{ij} = 1 | U_i, x_{ij} = 1)}{P(Y_{ij} = 0 | U_i, x_{ij} = 1)} = \exp(\beta_0^* + U_i + \beta_1^*)$$

$$\bullet \ Od(Ui, x_{ij} = 0) = \frac{P(Y_{ij} = 1 | U_i, x_{ij} = 0)}{P(Y_{ij} = 0 | U_i, x_{ij} = 0)} = \exp(\beta_0^\star + U_i)$$

•
$$Od(U_i, x_{ij} = 1) = e^{\beta_1^*} \times Od(U_i, x_{ij} = 0)$$

• the odds of respiratory infection for a hypothetical child with random effect U_i and with vitamin A deficiency are equal to $e^{\beta_1^2}$ times the odds of respiratory infection for the same hypothetical child with random effect U_i without vitamin A deficiency.

10

Transition Model for Binary Responses

• logit $P(Y_{ij} \mid y_{ij-1}) = \beta_0^{**} + \beta_1^{**} x_{ij} + \alpha y_{ij-1}$ the chance of respiratory infection at time t_{ij} depends on explanatory variables but also on whether or not the child had infection 3 months earlier

 $\beta_1^{**}=$ change \times unit change in x in the log odds of infection, among children with outcome y_{ij-1} at the prior visit

• $e^{\alpha}=\frac{\exp(\beta_0^{**}+\beta_1^{**}x_{ij}+\alpha)}{\exp(\beta_0^{**}+\beta_1^{**}x_{ij})}=$ ratio of the odds of infection among children who did and did not have infection at the prior visit

$$\frac{P(Y_{ij}=1|Y_{ij-1}=1)}{P(Y_{ij}=0|Y_{ij-1}=1)} = \exp(\beta_0^{**} + \beta_1^{**}x_{ij} + \alpha)$$

$$\frac{P(Y_{ij}=1|Y_{ij-1}=0)}{P(Y_{ij}=0|Y_{ij-1}=0)} = \exp(\beta_0^{**} + \beta_1^{**}x_{ij})$$

Transition matrix

The logistic regression above can be specified as a transition ma-

$$y_{ij} = 0 \quad \frac{0}{1 + \exp(\beta_0^{**} + \beta_1^{**} x_{ij})} \quad \frac{1}{1 + \exp(\beta_0^{**} + \beta_1^{**} x_{ij})}$$

$$y_{ij-1} = 1 \quad \frac{1}{1 + \exp(\beta_0^{**} + \beta_1^{**} x_{ij} + \alpha)} \quad \frac{\exp(\beta_0^{**} + \beta_1^{**} x_{ij})}{1 + \exp(\beta_0^{**} + \beta_1^{**} x_{ij} + \alpha)}$$

Parameter Interpretation of a Transition Logistic Regression Model

- $logit P(Y_{ij} = 1 \mid y_{ij-1}, x_{ij} = 1) = \beta_0^{\star \star} + \beta_1^{\star \star} + \alpha y_{ij-1}$
- $logit P(Y_{ij} = 1 \mid y_{ij-1}, x_{ij} = 0) = \beta_0^{\star \star} + \alpha y_{ij-1}$
- $Od(y_{ij-1}, x_{ij} = 1) = \frac{P(Y_{ij} = 1 | y_{ij-1}, x_{ij} = 1)}{P(Y_{ij} = 0 | y_{ij-1}, x_{ij} = 1)} = \exp(\beta_0^{\star \star} + \alpha y_{ij-1} + \beta_1^{\star \star})$
- $Od(y_{ij-1}, x_{ij} = 0) = \frac{P(Y_{ij} = 1 | y_{ij-1}, x_{ij} = 0)}{P(Y_{ij} = 0 | y_{ij-1}, x_{ij} = 0)} = \exp(\beta_0^{\star \star} + \alpha y_{ij-1})$
- $Od(y_{ij-1}, x_{ij} = 1) = e^{\beta_1^{**}} \times Od(y_{ij-1}, x_{ij} = 0)$
- the odds of respiratory infection for a hypothetical child with outcome at the previous visit equal to y_{ij-1} with vitamin A deficiency are equal to $e^{\beta_1^{**}}$ times the odds of respiratory infection for the same hypothetical child with outcome at the previous visit equal to y_{ij-1} without vitamin A deficiency.

In summary

1. Marginal model

$$logit P(Y_{ij} = 1) = \beta_0 + \beta_1 x_{ij}$$

 β_1 describes the effect of explanatory variables on the chance of infection in the **entire population**

2. Random effects model

$$logit P(Y_{ij} = 1 \mid U_i) = \beta_0^* + U_i + \beta_1^* x_{ij}$$

 eta_1^* describes the effect of the explanatory variables on an **individual** chance of infection

3. Transition model

$$logit P(Y_{ij} = 1 \mid y_{ij-1}) = \beta_0^{**} + \beta_1^{**} x_{ij} + \alpha y_{ij-1}$$

 β_1^{**} describes the effect of explanatory variables on the chance of infection adjusted by the outcome for respiratory infection at the **prior visit** Note that:

$$\mathsf{logit}P(Y_{ij} = 1 \mid y_{ij-1} = 0) = \beta_0^{**} + \beta_1^{**}x_{ij}$$

this is a Marginal logistic regression model for the sub-population of children that are free of infection at the previous visit

14

Contrasting Approaches

- ullet In linear models, the interpretation of eta is essentially independent of the correlation structure
- In non-linear models for discrete data, such us logistic regression, different assumptions about the source of correlation can lead to regression coefficients with distinct interpretations
- Two examples:

Infant growth

Respiratory Disease data

Linear Regression Model for infant growth

- Y_{ij} is the weight at age t_{ij}
- \bullet i is the child, j is the visit

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + \epsilon_{ij}$$

1. $E(Y_{ij}) = \beta_0 + \beta_1 t_{ij}$

i.e.- the average weight for all infants in the population at any time t is $\beta_0+\beta_1 t$

- ullet eta_1 is the change per month in the population-average weight
- 2. $corr(\epsilon_{ij}, \epsilon_{ik}) = \rho(t_{ij}, t_{ik}, \boldsymbol{\alpha})$

$$\rho(t_{ij}, t_{ik}, \boldsymbol{\alpha}) = \alpha_0 \text{ if } |t_{ij} - t_{ik}| < 6$$

$$\rho(t_{ij}, t_{ik}, \boldsymbol{\alpha}) = \alpha_1 \text{ if } |t_{ij} - t_{ik}| \geq 6$$

Linear Random Effects Model

$$\begin{array}{ll} Y_{ij} & = \beta_0^* + U_{i0} + (\beta_1^* + U_{i1})t_{ij} + Z_{ij} \\ Z_{ij} & \sim N(0, \sigma^2) \\ (U_{i0}, U_{i1}) & \sim N\left(0, \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}\right) \end{array}$$

In the linear random effects model, the regression coefficients also have a marginal interpretation

$$E[Y_{ij}] = \beta_0 + \beta_1 t_{ij}$$

- this is because the *average* of the rates of growth for individuals is the same as the change in the *population average* weight across time in a linear model
- if $G_{22} = 0 \Rightarrow corr(Y_{ij}, Y_{ik}) = \frac{G_{11}}{\sigma^2 + G_{11}}$

A Transition Model for infant growth

$$Y_{ij} = \beta_0^{**} + \beta_1^{**} t_{ij} + \epsilon_{ij} \quad (1)$$

$$\epsilon_{ij} = \alpha \epsilon_{ij-1} + Z_{ij}, \ Z_{ij} \sim N(0, \sigma^2)$$
 (2)

$$Y_{ij} = \beta_0^{**} + \beta_1^{**}t_{ij} + \alpha(y_{ij-1} - \beta_0^{**} - \beta_1^{**}t_{ij-1}) + Z_{ij}$$

$$E[Y_{ij} \mid y_{ij-1}] = \beta_0^{**} + \beta_1^{**}t_{ij} + \alpha(y_{ij-1} - \beta_0^{**} - \beta_1^{**}t_{ij-1})$$

$$(1)(2) \Rightarrow E[Y_{ij}] = \beta_0^{**} + \beta_1^{**}t_{ij}$$

this form of transition model, has coefficients which have a marginal interpretation

17

In summary

1. Marginal model $E[Y_{ij}] = \beta_0 + \beta_1 x_{ij}$

 eta_1 describes the change in the average response for a unit change in x_{ij} for the **entire population**

2. Random effects model

$$E(Y_{ij} | U_i) = \beta_0^* + U_i + \beta_1^* x_{ij}$$

$$E[Y_{ij}] = E[E(Y_{ij} | U_i)] = \beta_0^* + E[U_i] + \beta_1^* x_{ij} = \beta_0^* + \beta_1^* x_{ij}$$

 eta_1^* describes the change the the average response for a unit change in x_{ij} for a **particular subject**

3. Transition Regression model

$$E(Y_{ij} = 1 \mid y_{ij-1}) = \beta_0^{**} + \beta_1^{**} x_{ij} + \alpha y_{ij-1}$$

$$E[Y_{ij}] = E[E(Y_{ij} = 1 \mid y_{ij-1})] = \beta_0^{**} + \beta_1^{**} x_{ij}$$

 β_1^{**} describes the change of the average response for a unit change in x_{ij} among subjects with y_{ij-1} in the prior visit

$$oldsymbol{eta} = oldsymbol{eta}^* = oldsymbol{eta}^{**}$$

A Simulation Example

- 1. Set the parameters $\beta_0^*=-2,\ \beta_1^*=0.4,\ v^2=2$
- 2. generate $u_i \sim N(0, v^2)$
- 3. for u_i calculate $P(Y_{ij}=1\mid u_i,x_{ij}=0)$ and $P(Y_{ij}=1\mid u_i,x_{ij}=1)$, i.e. the chance of infection when the child is vitamin A deficient and when he is not
- ullet for example, a child with $u_i=0$ has 17% chance of infection when is vitamin A deficient, and 12% chance of infection when not:

$$P(Y_{ij} = 1 \mid u_i = 0, x_{ij} = 0) = \frac{\exp(\beta_0^*)}{1 + \exp(\beta_0^*)} = 0.12$$

$$P(Y_{ij} = 1 \mid u_i = 0, x_{ij} = 1) = \frac{\exp(\beta_0^*)}{1 + \exp(\beta_0^*)} \times \exp(\beta_1^*) = 0.17$$

- \bullet odds ratio for vitamin A deficiency is the some for every child, equal to $\exp(\beta_1^*)=1.5$
- \bullet for example, a child with $u_i=2$ has 74% chance of infection when is vitamin A deficient and 50% chance of infection when not

$$P(Y_{ij} = 1 \mid u_i = 2, x_{ij} = 0) = \frac{\exp(\beta_0^* + 2)}{1 + \exp(\beta_0^* + 2)} = 0.5$$

$$P(Y_{ij} = 1 \mid u_i = 2, x_{ij} = 0) = \frac{\exp(\beta_0^*) + 2}{1 + \exp(\beta_0^* + 2)} \times \exp(\beta_1^*) = 0.74$$

- However the corresponding change in absolute risk differs depending on the baseline rate
- the population rate of infection is the average risk, which is given by $P(Y_{ij}=1)=\int P(Y_{ij}=1\mid U_i)f(u_i,v^2)dU_i$

Implementation of Simulation study

- 1. generate $U_i \sim N(0, v^2)$ where v=2
- 2. generate $Y_{ij} \sim \mathsf{Bernouilli}(\mu_i)$ where
- 3. $\mu_i = rac{\exp(eta_0^* + U_i + eta_1^* x_{ij})}{1 + exp(eta_0^* + U_i + eta_1^* x_{ij})}$
- 4. estimate the fraction of people in the population with (and without vitamin A deficiency)
- 5. $\hat{P}(Y_{ij} = 1 \mid x_{ij} = 1) = 0.18$
- 6. $\hat{P}(Y_{ij} = 1 \mid x_{ij} = 0) = 0.23$
- 7. find β_0 and β_1 and compare them with β_0^* and β_1^*

21

22

If we use a marginal model

• in the marginal model, we ignore the differences among children and model the population-average

$$P(Y_{ij} = 1)$$
 rather than $P(Y_{ij} = 1 \mid U_i)$

• We estimate the fraction of people with infection among the people with(without) vitamin A deficiecy

$$\hat{P}(Y_{ij}=1\mid x_{ij}=0)=0.18$$
 for vitamin A replete $\hat{P}(Y_{ij}=1\mid x_{ij}=1)=0.23$ for vitamin A deficient

- infection rate in the sub-group that has sufficient vitamin A deficiency is $\exp(\beta_0)/(1+\exp(\beta_0))=0.18$ so that $\beta_0=-1.51$
- Odds ratio for vitamin A deficiency is

$$\exp(\beta_1) = \frac{P(Y_{ij}=1|x_{ij}=1)/P(Y_{ij}=0|x_{ij}=1)}{P(Y_{ij}=1|x_{ij}=0)/P(Y_{ij}=0|x_{ij}=0)}$$
$$= \frac{(0.23)/(1-0.23)}{0.18/(1-0.18)} = 1.36$$

so that $\beta_1 = 0.31$

Marginal Model vs Random effects

- Marginal and Random Effects model parameters differ in the logistic model
- Marginal: ratio of population odds
- Random Effects: ratio of individual's odds
- Marginal parameter values are smaller in absolute values than their random effects analogue
- Parameters in transition models also differ from either the random effects and marginal model parameters.

$$\mid \beta_k \mid \leq \mid \beta_k^* \mid$$