Marginal Logistic Regression Model and GEE

Marginal models are suitable to estimate population average parameters

For example, in the Indonesian Study, a marginal model can be used to address
questions such as:

e what is the prevalence of respiratory infection in children as function of age?

e is the prevalence of respiratory infection greater in the sub-population of
children with vitamin A deficiency?

e how does the association of vitamin A deficiency and respiratory infection
change with age?

the scientific objective is to characterize and contrast populations of children.

Marginal odds ratio
Yijk > 0 a greater value indicates positive associations
L yijp =

the degree of association is the same for all pairs of observations from the
same subject

2. vk = ag+ o | tig —ti |7

the degree of association is inversely proportional to the time between obser-
vations

Marginal Models for Binary Responses: Logistic Regression
e Model for the mean
E(Y;j) = P(Yj; = 1) = pi
logit(pi;) = Bo + Bii
o Model for Association
Marginal odds ratio
P = 1Y =1)Pr(Y;; = 0,Yi = 0)
Tk (Y =1,V = 0)Pr(Yiy = 0,V = 1)

Parameter Interpretation in Logistic Regression: ICHS study
e Marginal Logistic Regression:

|OgItP(Y;J = 1) = 130 =+ ,Bliﬂi]‘

corr(Y;;,Y;) = AR(1), Uniform, unstructured

eh _  P(=l]ai=1)/P(Y;j=0lzi=1)
P(Yyj=1z;=0)/P(Y;j=0lz;=0)

ePr: odds of infection among vitamin A deficient children divided by the odds
of infection among children replete with vitamin A.

population-average probability of infection:
P(Yy = 1] z;; =0) = exp(Bo)/(1 + exp(fo))
the population-average odds of infection is multiplied by exp(3,) for the
sub-population that is vitamin A deficient.
PYy=1|wy=1) 5 P(Y;=1[2i=0
P(Y;=0]z;=1) P(Y;; =0 zi; =0)
e Logistic Regression with Random Effects:

logitP(Y;; =1) = G + Ui + Bizi;
U; ~ N(07 1)2)
ot —  P(Yy=1Uiwi=1)/P(Yi=0Ui,zi=1)

P(Y;j=1|U;,xi;=0)/ P (Y;;=0|U;,x:;=0)

€%i: odds of infection for a child with random effect U; when he/she is
vitamin A deficient relative to when the same child is not
each child has his/ her baseline probability of infection:

Py =1]Uj zi; = 0) = exp(5; + U)/ (1 + exp(5 + Uy))
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and that a child’s odds of infection is multiplied by exp(53}) if he/she become
vitamin A deficient.
P(Yi=1|Upzij=1) _ 5P(Y;=1]|Uz;=0)
P(Yij:0|Ui,Iij:1) P(Y}j:0|UZ‘,IZ‘j:0)

v%: degree of heterogeneity in the propensity of disease not attributable to

Transition Logistic Regression Model:

H %% k%
|0gItP(}/ij = 1) = by + 51 T + QY1
i _  P(Yy=1lyij-1,75=1)/P(Yij=Olyij-1,7ij=1)
P(Yij=1lyij—1,2:j=0)/P(Y;j=0lyij-1,2:j=0)

ePl": odds of infection for a child with outcome at the previous visit
yij—1 when he/she is vitamin A deficient relative to when the same child is
not

each child has his/ her baseline probability of infection
P(Y; = 1] yij-1,2;5 = 0) = exp(By” + awij—1)/ (1 + exp(65” + agij-1))

and that a child’s odds of infection is multiplied by exp(S;*) if he/ she become
vitamin A deficient. In summary:

P(Y;=1]zj=0,y;1=0) = %’@3—)
PYy=1]zy=0y;1=1) = %
P(Yy =1 ay = Ly 1 =0) = p22uiil,
P(Yij=1]zj=1y;j1=1) = 131:):5»3(%:43-1/3:21)

Maximum Likelihood Estimation of 8 in GLM
Cross Sectional Data

In general:

LByy) = [Ii ) f(yi B)

UB) = 2ok = S, By — ()

find B such that L(B) > L(B)
or find B such that U(B) = 0

where p; = EY;, v; = var(Y;) = v(p;)-

e U(B) = 0 is called score equation. Solve the score equation is equivalent to
maximize a likelihood function.

o solutions of U(B) = 0 are not available in closed form, and require and
iterative procedure called lterative weighted least squares (IWLS) algorithm.

Main ideas of IWLS:

1. p; = EY;, v = var(Y;) = v(p)

2. Choose 3 to make ,ul(ﬂ) close to y; on average
3. weight y; by v;!

Maximum Likelihood Estimation of 3 in GLM
Cross Sectional Data

e If Y; is binary or a count, we specify the Likelihood function and estimate the
parameters of interest using Maximum Likelihood Estimation.

e For example, if Y; is binary:
Y; ~ Bernoulli(;)
logitP(Y;=1) = logitys; = Bo + Pr;
(5o, Br) oc TTip (1 — )t
we estimate [y and 5; by maximizing £(8, 51).
e For example, if Y; is count:

Y; Poisson(;)
logp; = ﬁO"‘ﬁll’?
£(Bo, B1) o< TI;eHipf

we estimate 3y and 8; by maximizing £(8, 51).
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GEE Estimation of 3 in GLM
Longitudinal Data

In the case of a linear regression model with the assumption of normality, the
extension from ordinary linear regression to longitudinal problem was facili-
tated by thinking about a multivariate normal distribution.

By specifying a model for the mean E[Y';] and the model for the covariance
matrix V;, we can fully specify the multivariate normal distribution:
Y~ MVN(XiB;,V;)

and use MLE.
Unfortunately if the elements of Y'; are counts or binary response, we cannot
naturally extend the Bernoulli or Poisson distributions to take into account of
correlation. Multivariate extensions of these distributions are quite complex
(except for biostats students!).
The main impediments with binary and count data are:
1. there are not multivariate generalizations of the necessary probability dis-

tributions

2. population-average and subject-specific approaches do not lead to the
same model for the mean response



GEE

e Under a GEE approach, we forget about trying to specify a model for the
whole multivariate distribution of a data vector. Instead the idea is to just
model the mean response E[Y ;] and the covariance matrix V; of a data vector
as in the normal case.

o |n absence of a convenient likelihood to work with, it is sensible to estimate
B by solving the following multivariate equation:

S(B,0) = 1 24V s - () = 0

o where V; = V(v B)

o The method of generalized estimating equations provides consistent estimates
for the mean parameter when a model for the correlation may not be reliably
specified.

e S(B,a) = 0 is a multivariate generalization of the score equation U(3) =0
used to maximize the likelihood function under a GLM

GEE

® One important property of the GLM family is that the score function S(3, c)
depends only on the mean and variance of Y;. Therefore the estimating
equation:

S(8.0) = 7 B4V g - () = 0

can be used to estimate the regression coefficients for any choices of link and
variance functions, whether or no they correspond to a particular member of
the exponential family.

S(B, @) = 0 is the generalized estimating equation.
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GLM for Longitudinal Data (GEE)
In summary, for GEE models, we specify:

e A GLM for the mean response
ME[Y]) = XB, h()is the link function
|2 Vi(e, B)

e V;(a, B) independence, completely unstructured

e the estimate of B and their standard error will be consistent (i.e. unbiased
for large sample size),

o if the specification of V; is correct then the GEE solution is the maximum
likelihood estimate
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GEE properties

° ,3 is nearly efficient relative to the maximum likelihood estimate of 3 - pro-
vided that var(Y’;) has been reasonable approximated

o GEE is the maximum likelihood score equation for multivariate Gaussian data,
and for binary data when var(Y’;) is correctly specified

e (3 is consistent from m — oo, even when var(Y';) is incorrectly specified
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Using GEE
1. Specify a model for the mean
9(pig) = @5
g() is a link function: linear, logit, log
2. Specify model for Cov(Y;, Yik)
Cov(Yyj,Yi) = (VarY,-jVarKk)l/QC’orr(Yij, Yir)

(a) Choose variance from
Gaussian, Poisson, binomial

v(p) =1, p, p(l - p)
(b) Choose correlation from
Exchangeable, AR-1, unstructured
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Maximum Likelihood estimation for binary data
e Y; is the # of patients responding negatively to treatment ¢
e n; is the total # of patients
e p; is the probability of negative response to treatment
e we consider two treatments i = 1,2
o the likelihood function for p; and ps is
I(p1, p2) o< pi' (1 = po)™ ™" X py'(1L — pa)™ ™

which we can write as function of §; and 0 so defined

00 = logiégtﬁg and 6 = log

e it turns out that the mle of 8; and 6, are
) _ y1(n2—ya)
O = log sy
0y = log 2

A ny—Y2
Vi) = T4+ 2+ L+

hn nm—n Y2 n2—Y2
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Bottom Line
If the scientific focus are the regression coefficients 3:

1. focus on modeling the mean structure
2. use a reasonable approximation of the covariance structure

3. check the inferences for B by comparing Bs robust std with respect different
covariance assumptions

4. if the B's std differ substantially, a more careful treatment of the covariance
model might be necessary.
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Data from the 2 x 2 crossover trial on cerebrovascular deficiency adapted from Jones and Kenward,
where treatment A and B are active drug and placebo, respectively; the outcome indicates whether
an electrocardiogram was judged abnormal (0) or normal (1).

Group (11) (0.1) (10) (0.0) Total 1 2
AB 22 0 34 28 22
BA 18 4 2 9 33 20 22

Example: a 2 x 2 crossover trial

e Goal: to compare the effect of an active drug (A) and a placebo (B) on
cerebrovascular deficiency

® 34 patients received A followed by B

® 33 patients received B followed by A

e Y;; = 1 if normal electrocardiogram reading

o At period 1, p; = y1/n1 = 28/34 = 82% of patients receiving drug A were
normal

o At period 1, po = ya/me = 20/33 = 61% of patients receiving placebo B
were normal

e Odds ratio of the chance of being normal for the active drug versus the
placebo is

0, — log (A=) — (13 x 28)/(20 x 6) = 3

y2(n1—y1
) 1 1 1 1
VVO) = Gtam+ ot g
= (28746714207 +1371)1/2 = 0.57

this estimate is larger than 1 and therefore indicates that the active drug
produces higher proportion of normal reading

16



Limitations
This approach has several limitations

1. Ignore the carry-over effect, i.e. the effect of the treatment at period 1 might
influence the response at period 2 (treatment x period interaction)

2. two responses for the same subject are likely to be correlated
3. in fact the odds ratio:
P(Y;; =1,Yy =1)Pr(Y;; =0,Y;, =0)
TPy =1L,Yg=0)Pr(Yy; =0,Yy=1)
is estimated to be
4. (22 x6)/(6 x 0.5) = 44 for group AB
5. (18 x 9)/(4 x 2) = 20.34 for group BA

v
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In Summary

1. Model 1 includes the treatment X period interaction (little support from the
data), and estimates marginal odds ratio by GEE

2. Model 2 drops the period xtreatment interaction and estimate the marginal
odds ratio by GEE

3. Model 3 assumes that the marginal odds ratio is zero, here By = 0.56 std
0.38 (much larger than under model 1 and 2)

4. if we fit model 3, but by using robust standard errors, than we obtain similar
results to the GEE approach
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GEE Approach
e we combine the data from both periods

e We can analyze 2 X 2 crossover trail as a longitudinal study with n; =n =2
and m = 67

e Yj; = 1 is subject 7 has a normal test at period j
ez, = 1if period 2 or 0 if period 1
e 25 =1 if active drug (A) or 0 if placebo (B)

fit a logistic regression model:

logit Pr(Yy; =1) = Bo+ fiziji + Botije + BsTijiTijo
OR(Y;,Y) =7

. Bg, = 1.02(+/ — 0.89) little support for a treatment by period interaction

e 4 = exp(3.54) = 34.5 strong within-subject association, i.e. ¥ indicates that
subjects with normal responses at the first visit have odds of normal reading
at the next visit that are almost 35 times higher than those who first response
was abnormal

o if we drop the interaction term, 3, = 0.57+/—0.23, exp(f;) = 1.77, i.e. the
odds of a normal electrocardiogram are 77% higher (0.77 = exp(0.57) — 1)
when using the active drug as compared to the placebo (GEE approach, robust
standard error)

o if we assume that the repeated measurements within subjects are independent
(y = 0) then By = 0.57 £ 0.38 erroneously assessing that there is not a
treatment effect (model based standard error)
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Respiratory Infection in Indonesian
preschool children (Sommer et al 1984)

o 275 children in Indonesia were examined for up to six consecutive quarters
for the presence of respiratory infections (i = 1,...,m =275, j=1,...,6
visits) Goals of the analysis:

1. Whether the prevalence of respiratory infection is higher among children
who suffer xerophthalmia (an ocular manifestation of chronic vitamin A
deficiency)

2. Estimate the change of respiratory infection with age

® seasonality as potential confounder
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Cross - Sectional Analysis
Model 1: first visit only

e Look at only the data for the first visit

o Fit a logistic regression model of respiratory infection on xerophthalmia and
age, adjusting for other covariates

logitP(Yi = 1) = By + Bixery + foage; + fBzagel, + Bagender;....

e we find a strong non-linear cross-sectional age effect on the prevalence for
respiratory infection

e cross-sectional analysis suggests that the prevalence for respiratory infection
increases from age 12 months and reaches its peak at age 20 months before
starting to decline.
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Longitudinal Analysis

Here we want to distinguish the contributions of cross sectional and lon-
gitudinal information to the estimated relationship of respiratory infection
and age.

Model 3: separate CS from LDA

e separate differences among sub-populations of children at different ages and
a fixed time (CS) from changes in children over time (LD).

® age;; = ageir + (agei; — agen)
® age;; is the age at entry (6¢)

® age;; — age;i is the follow up time (8z)
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Model 2: all visits plus controlling for seasonality
o Look at the data for all the visits
logitP(Yij = 1) = [+ fBixerij + Brage;; + fsage; + Sgender+
harmonic terms
5

=+

OR(Yy,Yix)
o Fit a logistic regression model of respiratory infection on xerophthalmia and
age, adjusting for other covariates

e we still find a strong non-linear cross-sectional age effect on the prevalence
for respiratory infection

o The age coefficient in model 2 can be interpreted as weighted averages of the
cross sectional age coefficients for each visit
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Model 3: separate CS from LDA
logitP(Y;; = 1) Bo + Bixery; + Pogender;+
Berage; + Beoagel+
Bri(age;; — age;r) + Bro(age;; — age; )™+
OR(Yij, Yir) gl

e 3¢ is the age effect on respiratory infection at the baseline age (age at entry)

=+ +

e /31, change of the risk of respiratory infection as the children grow older (follow
up time)
Results
e (¢ suggests that the risk of RI climbs steadily in the first 20 months before
declining

® (31 suggests that the risk of Rl declines in the first 7-8 months of follow up
before rising lately in life
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Model 4: separate CS from LDA and adjusting for seasonality

logitP(Y;; = 1) Bo + Bixery; + Gogender;+

Berage + Beoageh+

Bri(age;; — age;)

+PL2(age;; — age;;)? + harmonic terms
5

Summary of Results

I+ ++ 1

OR(Yy, Yir)

o Pattern of convex relationship between age and the risk of respiratory infection
appears to coincide with the pattern of seasonality

o If we include harmonic terms, then the longitudinal parameters (corresponding
to the follow up in the table) are not statistically significant

® The longitudinal information (variation over time of respiratory infections
versus variations over time of age) is highly confounded by seasonality

o Therefore, in presence of a strong seasonal signal, we can learn little about
the effects of aging from data collected over 18 months period if we restrict
our attention to longitudinal information

® However much can be learned by comparing children at different ages so long
as we can assume that there are not cohort effects confounding the inferences
about age

e BE CAREFUL.. in longitudinal analysis always look for time-varying con-
founder
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