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LDA FAQ
Q: What is the difference in the random effect model and the GEE model and population average model for continuous outcomes?  Also, how would you interpret each of the parameters?
 A: GEE is an estimation method. In LDA we talk about three types of models: marginal (or population average), random effects models, and transitional models. 

GEE model and population average model for continuous outcomes are the same. 
When you have continuous outcomes the interpretation of the regression coefficients (β0, β1)  is the same under a marginal model (that is a population average model) and under a model for random effect and under a transitional model.  When you have binary outcomes, the interpretation of the regression coefficients (β0, β1) under a marginal model is different than the interpretation of the regression coefficients under a random effect model (β0*, β1*) and is different than the interpretation of the regression coefficients under a transitional model (β0**, β1**).
Q:   In all longitudinal data, are there three sources of variance: between subject variance, within subject variance, measurement errors? 

 

A: Yes, this is the maximum number of variance components that we can estimate.
 

Q: I saw in the slide 12 of lecture “Linear Models for Correlated Data: Example”,

uniform correlation model only lists two sources of random variation. I am not sure

about it.

 

A: In that case we are assuming that there is a measurement error + between subject variance only.
 

Q: How to explain the variance between and within subject? In the marginal model, 
 = 2 between / (2 between + 2 within) is interpreted as the within-subject correlation

between measurements on the same subject, but it also denotes fraction of variance

between subject / total variance. Two  seem to have different meaning to me. 

 

A: A linear regression model with random intercept is equivalent to a marginal model with a uniform correlation structure. You can calculate in both models. In the first model,  is the correlation between the repeated measures on the same subject, in the second model  is the fraction of the total variance that is explained by the between subject variance. These are two equivalent interpretation of the parameter 
 

Q: To me, similar confusions appear in the following place: In random effect model with random intercept:  Yij=X + Ui + Zij; var (Ui)= 2 : between subject variance. Var(Zij)= 2 : within subject variance.  =2  / (2 +2 ): between subject / total variance.
 

In marginal model with uniform correlation: E(Yij)= X, which is equivalent to

random effect model with random intercept .

                        1   ….          2 +2  2       2  …….     2       
  1  ….         2        2 +2   2……… 2        
               V0=  2 total  …….……..    =      

   …. 1         2        2   2……2 +2   2        
   ….  1        2        2   2……… 2     2 +2          
      But here, 2 : variance between measurements on same subject

                      2 : variance within measurement on same subject

                      : fraction of variance between measurements on same subject.  

In this covariance matrix, how to see the variance between subject? How to explain   2 ,2 and  correctly and let them have consistent meaning?

 

A: In the marginal model, your goal is to make inference on average for the entire population accounting for the correlation, so that is way you don't need to discuss 2.
 

Although the marginal model and the random effect model in this case are perfectly equivalent, you will use one or the other depending on what is the scientific question. 
If the scientific question is a treatment effects on average for the entire population, then you fit a marginal model and estimate β and . 
If the scientific question is whether there is a variability across subjects in the rate of change then you estimate a random effect model and look at the interpretation of  2.
 

Q:   Random effect model with random intercept is equivalent to marginal model

with uniform correlation covariance, what marginal model is random effect model

with random slope equivalent to?  

 

A: A model with random slope and random intercept correspond to a marginal model with a correlation structure much more complicated than the uniform. See the text book
 

 Q: For logistic regression in LDA, could we use autocorrelation function and variogram to explore the correlation structure of binary outcome variable? 

A:  The answer is NO. “For binary or multinomial data, the marginal variance is a function of the mean, and hence the variogram of covariogram are not appropriate summaries of the dependence.” See the paper by Heagerty and Zeger (JASA 1998) for details. 

 

Q  What exactly is a link function?  You mentioned that GLM involves a link function and a sampling distribution.

A: The word “linear” in GLM (General Linear Model) means that we have a linear predictor for the mean in those models, which is the Xβ. That is g(μ)=Xβ. The link function is this function g that relates the mean outcome μ to the linear predictor Xβ.
There are several types of relationships between the  mean outcome (y) and the linear predictor. 
For example, in logistic regression the outcome is associated to the linear predictor through the logit function: 
logit(E(Y)) = log (E(Y)/(1-E(Y))) = Xβ. 
The logit function is an example of link function. For linear regression the link function is the identical function, E(Y)= Xβ. 
For Poisson regression, the link function is the logarithm.

Notice that with a link function and a linear predictor, we only specif the expectation of the outcome. The sampling distribution refers to the full distribution of the outcome. For example, in Poisson regression the outcome Y follows a Poisson distribution with expectation equal to  μ=exp(Xβ), because Y ~ Poisson (μ)  and    Log(μ) = Xβ
 

Q: This is a conceptual question: for the marginal logistic model, exp(β1) is interpreted as the odds of infection in a subpopulation of children with vitamin A deficiency relative to a different subpopulation of children without vitamin A deficiency.  This makes sense.  For exp(β1*), the notes state that it is the odds of infection for a child with random effect Ui when he/she is vitamin A deficient relative to when the SAME child is not vitamin A deficient.  How does one calculate the two odds for exp(β1*) if they are derived from the SAME child under two (simultaneously?) different exposure categories (i.e., vitamin A deficient and not vitamin A deficient).  They appear to be counterfactual states.

A: One way of thinking that might help is to compare this to the adjustment of a confounder. For example, in a linear regression of weight on height (β1), after adjusting for age (β2), we say β1 represent the average increase in weight with a one-unit increase in height HOLDING AGE CONSTANT. We consider the random effect as a latent variable, something like a confounder that we can’t observe it. Hence, having the  random effect in the model, is similar to adjusting for a confounder(=the random effect), i.e. holding that confounder constant.

Q. If we have random intercept and random slope in the model, how does the command in STATA change?
A: There are STATA macros GLLAMM and gllapred that allow us to fit mixed models  and obtain estimates of the latent random effects.  Gllamm is similar to proc nlmixed in SAS, which allows random intercepts and random slopes, or even more complicated structures.  

 You can install gllamm directly from STATA by entering

 

webseek gllamm    into the STATA command line and following the directions.  Please also see the GLLAMM website for examples and information about the command. 

Q Even if the variogram does not show a need for random intercept, but in an unbalanced study every subject does start with a different level of response which needs to be accounted for. How could we explain that?

A. A different baseline level of the outcome does not necessarily mean big variance of the random intercepts. Have you looked at the residuals of the baseline response? If the variogram shows little evidence of random intercept, I suspect the variation in the residuals would be rather small. Or, if different baseline level is a big concern, try using the baseline as a covariate. 

Q When calculating the AIC for choosing the best model, each structure
would have fixed number of parameters to be estimated, could you let us know these standard parameters?
The number of parameters in your model is the number of covariates in your mean model, plus the number of parameters in your correlation model. If you have a categorical covariate in your mean model, for example, age in 5 categories, and you use “i.age” in you command, then you need to count 4 parameters for the covariate “age” instead of 1. For parameters in correlation model, you have 2 parameters for uniform correlation model (the variance of Ui plus the variance of Zij), and 2 parameters for the exponential correlation model(the variance of Wij and the correlation between Wij, and Wik). For unstructured correlation model, if it is a nxn covariance matrix, then you have n(n+1)/2 parameters.

Q Can we do any selection methods when we are specifying a correlation
structure? (e.g. if we are starting out with say 15 variables). What is the
appropriate procedure?
There are two stages to choosing a model for a LDA.: choosing the mean model and choosing the correlation structure. 

If you are doing a linear regression model, you could use acf and variogram of the residuals to first explore the correlation structure of your data. Usually this part is done for an as large a model as possible. And also, fit the model with the unstructured correlation and compare the results from this unstructured model with those from the model with your desired correlation. If they are close, that means you’ve made a good choice. Another way to choose model is using the AIC criteria, choose model with smallest AIC. For logistic regression or  Poisson regression, you CANNOT use acf and variogram, you can only use the other two methods to select your correlation structure.

Q. For robust estimation with maximum likelihood, I think you mentioned
that the independent variables have to be categorical, do all the variables in the model have to be categorical, can we use this method for continuous predictors?

The answer is NO. To use robust estimation, we need a consistent estimate of the covariance matrix, which is usually done by estimating the covariance matrix of the saturated model. If all the covariates are categorical, the saturated model is simply incorporating a separate parameter for the mean response at each time within each covariates-category. However, when you have continuous covariates, it is hard to decide what is the saturated model, whether to incorporate the covariate as a linear effect or as a quadratic or more general non-linear effect, interactions, etc,   is hard to decide. So this strategy is not feasible for model with continuous covariates.

Q.  What are the two odds that are being divided in the OR that is used to model the correlation between binary data? 

That odds ratio is actually the odds ratio for person i to have a positive response (Y=1) at time point j compared to the person i that having positive response at time point k . 
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