Variance/Covariance Matrices

For a vector of random variables, (Y_1, Y_2, \ldots, Y_n) , we can write a matrix containing their variances and their covariances. Let σ_i^2 be the variance of Y_i and let cov_{ij} be the covariance between Y_i and Y_j , i < j. Then the variance/covariance matrix for (Y_1, Y_2, \ldots, Y_n) is

$$\begin{bmatrix} \sigma_1^2 & cov_{12} & \cdots & cov_{1n} \\ cov_{12} & \sigma_2^2 & \cdots & cov_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ cov_{1n} & cov_{2n} & \cdots & \sigma_n^2 \end{bmatrix}$$

This can be standardized to give the correlation matrix

$$\begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1n} \\ \rho_{12} & 1 & \cdots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1n} & \rho_{2n} & \cdots & 1 \end{bmatrix}$$

where ρ_{ij} is the correlation of Y_i and Y_j , i < j.

Note that both of these matrices are symmetric. Furthermore, the terms on the diagonal of the variance/covariance matrix must be positive and the terms off the diagonal of the correlation matrix are bounded between -1 and 1.

Multiple Regression in Matrix Notation

We have a response variable Y and a set of independent variables X_1, \ldots, X_p . We can write our data for n observations as

$$oldsymbol{Y} = \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight]$$

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}.$$

The multiple regression model can then be written as

$$Y = X\beta + \epsilon$$

where

$$oldsymbol{eta} = \left[egin{array}{c} eta_0 \ eta_1 \ dots \ eta_p \end{array}
ight]$$

and

$$\boldsymbol{\epsilon} = \left[egin{array}{c} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{array}
ight].$$

We assume ϵ has a multivariate normal distribution:

$$\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I_n}).$$

Least squares minimizes the function

$$RSS(\boldsymbol{\beta}) = (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

with respect to β . Note that this is the same as

$$= \begin{pmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} \beta_0 + \beta_1 x_{11} + \ldots + \beta_p x_{1p} \\ \beta_0 + \beta_1 x_{21} + \ldots + \beta_p x_{2p} \\ \vdots \\ \beta_0 + \beta_1 x_{n1} + \ldots + \beta_p x_{np} \end{bmatrix} \right)'$$

$$\times \begin{pmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} \beta_0 + \beta_1 x_{11} + \ldots + \beta_p x_{1p} \\ \beta_0 + \beta_1 x_{21} + \ldots + \beta_p x_{2p} \\ \vdots \\ \beta_0 + \beta_1 x_{n1} + \ldots + \beta_p x_{np} \end{bmatrix} \right)$$

$$= \begin{bmatrix} y_1 - (\beta_0 + \beta_1 x_{11} + \ldots + \beta_p x_{1p}) \\ y_2 - (\beta_0 + \beta_1 x_{21} + \ldots + \beta_p x_{2p}) \\ \vdots \\ y_n - (\beta_0 + \beta_1 x_{n1} + \ldots + \beta_p x_{np}) \end{bmatrix} \begin{bmatrix} y_1 - (\beta_0 + \beta_1 x_{11} + \ldots + \beta_p x_{1p}) \\ y_2 - (\beta_0 + \beta_1 x_{21} + \ldots + \beta_p x_{2p}) \\ \vdots \\ y_n - (\beta_0 + \beta_1 x_{n1} + \ldots + \beta_p x_{np}) \end{bmatrix}^2$$

$$= \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip})]^2 .$$

Recall that the least squares estimate is $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$ and that $\hat{\boldsymbol{\beta}}$ is an unbiased

estimate of β . We can show this as follows

$$E(\hat{\boldsymbol{\beta}}) = E\left[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y} \right]$$

$$= E\left[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}) \right]$$

$$= E\left[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\epsilon} \right]$$

$$= E\left[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} \right] + E\left[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\epsilon} \right]$$

$$= E(\boldsymbol{\beta}) + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'E(\boldsymbol{\epsilon})$$

$$= E(\boldsymbol{\beta}) + \mathbf{0}$$

$$= E(\boldsymbol{\beta})$$