Variance/Covariance Matrices

For a vector of random variables, (Y1,Y5,...,Y,), we can write a matrix containing their
variances and their covariances. Let Uf be the variance of Y; and let cov;; be the covariance
between Y; and Y}, i < j. Then the variance/covariance matrix for (Y3,Y3,...,Y,) is
2
o COV12 *++*+ COU1p
COViy O3+ COUgy
2
COVy, €OV et On

This can be standardized to give the correlation matrix
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where p;; is the correlation of ¥; and Y}, 7 < j.

Note that both of these matrices are symmetric. Furthermore, the terms on the diagonal
of the variance/covariance matrix must be positive and the terms off the diagonal of the
correlation matrix are bounded between -1 and 1.

Multiple Regression in Matrix Notation

We have a response variable Y and a set of independent variables X, ..., X,. We can write
our data for n observations as
Y1
Y2
Y = .
Yn
1 21 2190 -+ T1p
1 @o1 xeo -+ 1o
p
X =
1 Tp1r Tp2z - Tpp

The multiple regression model can then be written as

Y=XB+e€



where

and

We assume € has a multivariate normal distribution:
e ~ N(0,0%I,).
Least squares minimizes the function
RSS(B) =(Y — XB)' (Y — XB)

with respect to 8. Note that this is the same as
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Recall that the least squares estimate is B = (X’'X)71X'Y and that ﬁ is an unbiased



estimate of 8. We can show this as follows
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