1. **Objective:** Analyzing dental data using ordinary least square (OLS) and Generalized Least Square (GLS) in STATA.

2. **Scientific question:** Determine whether there is a difference between boys and girls with respect to the distance and its change over time.

3. **Dataset:** Dental study data set (http://biosun01.biostat.jhsph.edu/~fdominic/teaching/LDA/dental.dat)

 Data description: 27 children, 16 boys and 11 girls were observed at each ages 8, 10, 12 and 14 years. The data set has the following five columns:
 - Column 1: observation number
 - Column 2: child id number
 - Column 3: age
 - Column 4: distance
 - Column 3: gender indicator (0=girl, 1=boy)

 Outcome: distance, is a continuous variables.
 Covariate: age and gender.

4. **STATA output of the analysis**

   ```stata
   . *read the dental data set
   . infile obs id age dist sex using c:\data\dental.dat, clear
      (108 observations read)
   .
   . ****************
   . ******EDA******
   . ****************
   . *scatter plots
   . graph dist age if sex==0, xlab ylab ti("Scatter plot of the data for girls")
      > saving(g1,replace)
   . graph dist age if sex==1, xlab ylab ti("Scatter plot of the data for boys") s
      > aving(g2,replace)
   . graph using g1 g2
   ```
. graph dist if sex==0, box by(age) ti("box-plots of distance vs. age for girls") saving(g3, replace)

. graph dist if sex==1, box by(age) ti("box-plots of distance vs. age for boys") saving(g4, replace)

. graph using g3 g4

. *longitudinal plots
. sort id age
. graph dist age if sex==0, c(L) s(i) xlab ylab ti("Spaghetti plot of the data for girls") saving(g5, replace)

. graph dist age if sex==1, c(L) s(i) xlab ylab ti("Spaghetti plot of the data for boys") saving(g6, replace)

. graph using g5 g6

. *OLS (ignoring the correlation between responses for same person)
. reg dist age if sex==0

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>50.5920455</td>
<td>1</td>
<td>50.5920455</td>
<td>F(1, 42) = 10.80</td>
</tr>
<tr>
<td>Residual</td>
<td>196.697727</td>
<td>42</td>
<td>4.68327922</td>
<td>Prob > F = 0.0021</td>
</tr>
<tr>
<td>Total</td>
<td>247.289773</td>
<td>43</td>
<td>5.75092495</td>
<td>R-squared = 0.2046</td>
</tr>
</tbody>
</table>

| dist | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------|-------|-----------|-------|------|------------------------|
| age | .4795455 | .1459028 | 3.287 | 0.002 | .1851016 | .7739893 |
. reg dist age if sex==1

Source | SS df MS Number of obs = 64
---------+------------------------------ F(1, 62) = 36.65
Model | 196.878125 1 196.878125 Prob > F = 0.0000
Residual | 333.059375 62 5.3719254 R-squared = 0.3715
---------+------------------------------ Adj R-squared = 0.3614
Total | 529.93750 63 8.41170635 Root MSE = 2.3177

--
 dist | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
 age | .784375 .1295657 6.054 0.000 .5253769 1.043373
 _cons | 16.34063 1.454371 11.236 0.000 13.43338 19.24787
--

. reg dis age sex

Source | SS df MS Number of obs = 108
---------+------------------------------ F(2, 105) = 36.41
Model | 375.820875 2 187.910438 Prob > F = 0.0000
Residual | 541.871254 105 5.16067861 R-squared = 0.4095
---------+------------------------------ Adj R-squared = 0.3983
Total | 917.69213 107 8.57656196 Root MSE = 2.2717

--
 dist | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
 age | .6601852 .0977589 6.753 0.000 .4663473 .8540231
 sex | 2.321023 .4448862 5.217 0.000 1.438896 3.20315
 _cons | 15.38569 1.128567 13.633 0.000 13.14795 17.62343
--

. sum age

Variable | Obs Mean Std. Dev. Min Max
---------+---
 age | 108 11 2.246493 8 14

. egen mage=mean(age)

. disp mage

11

. gen cage=age-mage

. xi: reg dist cage sex i.sex*cage

i.sex | Isex_0-1 (naturally coded; Isex_0 omitted)
i.sex*cage | IsXCag_# (coded as above)

Source | SS df MS Number of obs = 108
---------+------------------------------ F(3, 104) = 25.39
Model | 387.935027 3 129.311676 Prob > F = 0.0000
Residual | 529.757102 104 5.09381829 R-squared = 0.4227
---------+------------------------------ Adj R-squared = 0.4061
Total | 917.69213 107 8.57656196 Root MSE = 2.2569

--
 dist | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
. *add quadratic term of age to the OLS
. gen age2=cage^2

. reg dis cage age2 sex

| Dist | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------|--------|-----------|-------|---------|----------------------|
| cage | .6601852 | .0980966 | 6.730 | 0.000 | .465656 .8547144 |
| age2 | .0289352 | .0548377 | 0.528 | 0.599 | -.07981 .1376803 |
| sex | 2.321023 | .4464228 | 5.199 | 0.000 | 1.43575 3.268296 |
| _cons| 22.50305 | .4396351 | 51.186| 0.000 | 21.63124 23.37486 |

. *we found quadratic term of age is not significant

. *calculate the autocorrelation matrix, determine the correlation structure
. sort id age
. by id: gen num=_n
. autocor dist num id

<table>
<thead>
<tr>
<th></th>
<th>time1</th>
<th>time2</th>
<th>time3</th>
<th>time4</th>
</tr>
</thead>
<tbody>
<tr>
<td>time1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time2</td>
<td>0.6256</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time3</td>
<td>0.7108</td>
<td>0.6349</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>time4</td>
<td>0.5998</td>
<td>0.7593</td>
<td>0.7950</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

acf
1. .685653
2. .7284871
3. .5998338
Autocorrelation Scatterplot

ACF

tau

. *GLS(using independent, exchangeable, exponential(ar1) and unstructured corre
lation)
. *independent correlation(same as OLS)
. xtgee dist age if sex==0, i(id) corr(ind)

Iteration 1: tolerance = 6.603e-15

GEE population-averaged model

<table>
<thead>
<tr>
<th></th>
<th>Number of obs</th>
<th>Number of groups</th>
<th>Link</th>
<th>Obs per group: min</th>
<th>Family</th>
<th>Obs per group: avg</th>
<th>Correlation</th>
<th>Scale parameter:</th>
<th>Wald chi2(1)</th>
<th>Prob > chi2</th>
<th>Deviance</th>
<th>Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gaussian</td>
<td></td>
<td>independent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>.4795455</td>
<td>.1459028</td>
<td>3.287</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>17.37273</td>
<td>1.637755</td>
<td>10.608</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

. xtcorr

Estimated within-id correlation matrix R:

 c1 c2 c3 c4
r1 1.0000
r2 0.0000 1.0000
r3 0.0000 0.0000 1.0000
r4 0.0000 0.0000 0.0000 1.0000

. xtgee dist age if sex==1, i(id) corr(ind)

Iteration 1: tolerance = 2.663e-15

GEE population-averaged model

<table>
<thead>
<tr>
<th></th>
<th>Number of obs</th>
<th>Number of groups</th>
<th>Link</th>
<th>Obs per group: min</th>
<th>Family</th>
<th>Obs per group: avg</th>
<th>Correlation</th>
<th>Scale parameter:</th>
<th>Wald chi2(1)</th>
<th>Prob > chi2</th>
<th>Deviance</th>
<th>Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gaussian</td>
<td></td>
<td>independent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td></td>
</tr>
</tbody>
</table>
Pearson chi2(62): 333.06 Deviance = 333.06
Dispersion (Pearson): 5.371925 Dispersion = 5.371925

| dist | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|---------|-----------|-------|--------|----------------------|
| age | .784375 | .1295657 | 6.054 | 0.000 | [.5304309 1.038319] |
| _cons | 16.34063| 1.454371 | 11.236| 0.000 | [13.49011 19.19114] |

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4
r1 1.0000
r2 0.8545 1.0000
r3 0.8545 0.8545 1.0000
r4 0.8545 0.8545 0.8545 1.0000

. *exchangeable correlation
. xtgee dist age if sex==0, i(id) corr(exc)

Iteration 1: tolerance = 7.735e-16

GEE population-averaged model
Number of obs = 44
Group variable: id Number of groups = 11
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: exchangeable max = 4
Scale parameter: 4.683279 Wald chi2(1) = 74.22

| dist | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|---------|-----------|-------|--------|----------------------|
| age | .4795455| .0556625 | 8.615 | 0.000 | [.370449 .5886419] |
| _cons | 17.37273| .8684316 | 20.005| 0.000 | [15.67063 19.07482] |

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4
r1 1.0000
r2 0.8545 1.0000
r3 0.8545 0.8545 1.0000
r4 0.8545 0.8545 0.8545 1.0000

. xtgee dist age if sex==1, i(id) corr(exc)

Iteration 1: tolerance = 6.146e-16

GEE population-averaged model
Number of obs = 64
Group variable: id Number of groups = 16
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: exchangeable max = 4
Scale parameter: 5.371925 Wald chi2(1) = 68.51

| dist | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|---------|-----------|-------|--------|----------------------|
| age | .4795455| .0556625 | 8.615 | 0.000 | [.370449 .5886419] |
| _cons | 17.37273| .8684316 | 20.005| 0.000 | [15.67063 19.07482] |
. xtgee dist age if sex==0, i(id) t(age) corr(ar1)

Iteration 1: tolerance = .00359913
Iteration 2: tolerance = 1.357e-07

GEE population-averaged model Number of obs = 44
Group and time vars: id age Number of groups = 11
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: AR(1) max = 4
Wald chi2(1) = 32.30
Scale parameter: 4.683506 Prob > chi2 = 0.0000

. xtgee dist age if sex==1, i(id) t(age) corr(ar1)

Iteration 1: tolerance = .01108648
Iteration 2: tolerance = .00005707
Iteration 3: tolerance = 4.267e-07

GEE population-averaged model Number of obs = 64
Group and time vars: id age Number of groups = 16
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: AR(1) max = 4
Wald chi2(1) = 35.77
Scale parameter: 5.376588 Prob > chi2 = 0.0000

dist | Coef. Std. Err. z P>|z| [95% Conf. Interval]

 age | .784375 .0947624 8.277 0.000 .5986441 .9701059
 _cons | 16.34062 1.134732 14.400 0.000 14.11659 18.56466

dist | Coef. Std. Err. z P>|z| [95% Conf. Interval]

 age | .4847376 .0852895 5.683 0.000 .3175733 .651902
 _cons | 17.3066 1.113527 15.542 0.000 15.12413 19.48907

dist | Coef. Std. Err. z P>|z| [95% Conf. Interval]

 age | .4847376 .0852895 5.683 0.000 .3175733 .651902
 _cons | 17.3066 1.113527 15.542 0.000 15.12413 19.48907

. xtcrr

Estimated within-id correlation matrix R:

c1 c2 c3 c4
r1 1.0000
r2 0.4651 1.0000
r3 0.4651 0.4651 1.0000
r4 0.4651 0.4651 0.4651 1.0000

. *exponential correlation
. xtgee dist age if sex==0, i(id) t(age) corr(ar1)

Iteration 1: tolerance = .00359913
Iteration 2: tolerance = 1.357e-07

GEE population-averaged model Number of obs = 44
Group and time vars: id age Number of groups = 11
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: AR(1) max = 4
Wald chi2(1) = 32.30
Scale parameter: 4.683506 Prob > chi2 = 0.0000

. xtcrr

Estimated within-id correlation matrix R:

c1 c2 c3 c4
r1 1.0000
r2 0.8847 1.0000
r3 0.7827 0.8847 1.0000
r4 0.6925 0.7827 0.8847 1.0000

. xtgee dist age if sex==1, i(id) t(age) corr(ar1)

Iteration 1: tolerance = .01108648
Iteration 2: tolerance = .00005707
Iteration 3: tolerance = 4.267e-07

GEE population-averaged model Number of obs = 64
Group and time vars: id age Number of groups = 16
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: AR(1) max = 4
Wald chi2(1) = 35.77
Scale parameter: 5.376588 Prob > chi2 = 0.0000

_xtcrr

Estimated within-id correlation matrix R:

c1 c2 c3 c4
r1 1.0000
r2 0.8847 1.0000
r3 0.7827 0.8847 1.0000
r4 0.6925 0.7827 0.8847 1.0000

. xtgee dist age if sex==1, i(id) t(age) corr(ar1)

Iteration 1: tolerance = .01108648
Iteration 2: tolerance = .00005707
Iteration 3: tolerance = 4.267e-07

GEE population-averaged model Number of obs = 64
Group and time vars: id age Number of groups = 16
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: AR(1) max = 4
Wald chi2(1) = 35.77
Scale parameter: 5.376588 Prob > chi2 = 0.0000
. xtcorr

Estimated within-id correlation matrix R:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>0.4657</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>0.2169</td>
<td>0.4657</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>0.1010</td>
<td>0.2169</td>
<td>0.4657</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

. *unstructured correlation
. xtgee dist age if sex==0, i(id) t(age) corr(uns)

Iteration 1: tolerance = .00563941
Iteration 2: tolerance = .00001054
Iteration 3: tolerance = 1.824e-08

GEE population-averaged model Number of obs = 44
Group and time vars: id age Number of groups = 11
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: unstructured max = 4
Wald chi2(1) = 29.50
Scale parameter: 4.68365 Prob > chi2 = 0.0000
--
 dist | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------+---
 age | .4711862 .0867513 5.431 0.000 .3011568 .6412155
_cons | 17.46256 .9957054 17.538 0.000 15.51102 19.41411
--

. xtcorr

Estimated within-id correlation matrix R:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>0.6505</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>0.8411</td>
<td>0.7814</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>0.8453</td>
<td>0.7918</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

. xtgee dist age if sex==1, i(id) t(age) corr(uns)

Iteration 1: tolerance = .00395941
Iteration 2: tolerance = .00004108
Iteration 3: tolerance = 5.253e-06
Iteration 4: tolerance = 5.331e-07

GEE population-averaged model Number of obs = 64
Group and time vars: id age Number of groups = 16
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: unstructured max = 4
Wald chi2(1) = 57.20
Scale parameter: 5.372557 Prob > chi2 = 0.0000
--
 dist | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------+---
 age | .4711862 .0867513 5.431 0.000 .3011568 .6412155
_cons | 17.46256 .9957054 17.538 0.000 15.51102 19.41411
--
| dist | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------|-------|-----------|------|-----|-------------------|
| age | 0.7801528 | 0.1031489 | 7.563 | 0.000 | 0.5779846 - 0.982321 |
| _cons | 16.40993 | 1.192964 | 13.756 | 0.000 | 14.07176 - 18.74809 |

```
.xtcorr

Estimated within-id correlation matrix R:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>0.3833</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>0.6311</td>
<td>0.3867</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>0.2871</td>
<td>0.4803</td>
<td>0.5641</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
```