Wednesday 13 February 2002

Analysis of pigs data

Data: Body weights of 48 pigs at 9 successive follow-up visits.
This is an equally spaced data. It is always a good habit to reshape the data, so we can easily switch form wide to long or long to wide depending on the required analysis. The data is in the wide format; let's reshape it into long format.

```
. reshape groups time 1-9 ## Since we have observations at 9 time
points
. reshape vars week ## declare the variables
. reshape cons Id ## declare constants
. reshape long (wide)
```

While reshaping the data from any format, the first three steps are the same. The lat command, reshape long or reshape wide depends on the structure of the original data.

Now we have the data in long format, to go into the wide form, just type reshape wide. You don't have to repeat the first three commands.

Exploratory analysis

Lets just make some scatter plots of the data. First we plot the scatter plot matrix. For this we require the data in wide format.

```
. reshape wide
. graph week1 week2 week3 week4 week5 week6 week7 week8 week9, matrix
half
```


What do you conclude from the above scatter plot matrix?

To see if the pigs gained weight over time lets plot the line (spaghetti) plot. For this we need the data in the long form.

```
. reshape long
. sort Id time
```


What do you conclude from the graph?

The above figure is enough to explore the growth data. It is hard to pick out individual response profiles. We can add a second display, obtained form first standardizing each observation. This is achieved by, subtracting the mean, and dividing by the standard deviation of the 48 observations at each time (week). For this we would need the data in wide format.

Now do the following for each of week1, week2, ..., week9

After you do this, we will have 9 new variables. To make the plot, again reshape long.

```
. sort Id time
. graph Sweek time, c(L) s(.) xlab(2 4 6 8) ylab(-3 -2 -1 0 1 2 3)
rlab(-3 -2 -1 0 1 2 3)
```


The plot is able to highlight the degree of tracking, animals tend to maintain their relative size over time.

Exploring the correlation structure

Auto-correlation function. For this we require the data in long format.

```
. autocor week time Id
```

Table 1

	time1	time2	time3	time 4	time5	time6	time 7 t	time8 time9
time1	1.0000							
time2	0.9156	1.0000						
time3	0.8015	0.9118	1.0000					
time 4	0.7958	0.9084	0.9582	1.0000				
time5	0.7494	0.8809	0.9280	0.9621	1.0000			
time6	0.7051	0.8353	0.9058	0.9327	0.9219	1.0000		
time7	0.6551	0.7759	0.8435	0.8681	0.8546	0.9633	31.0000	
time8	0.6255	0.7133	0.8167	0.8293	0.8104	0.9280	0.9586	$6 \quad 1.0000$
time9	0.5581	0.6638	0.7689	0.7856	0.7856	0.8893	0.9170	0.96951 .0000

Table 2

1. . 9425781
2. . 8870165
3. . 8462396
4. . 7962576
5. . 7724156
6. . 7121489
7. . 6407955
8. . 5581002

Notice from the main diagonal of the scatter plot matrix there is positive correlation between repeated observations on the same animal that are 1 week apart. The degree of correlation decreases as the observations are moved farther from the diagonals. Also the correlation is reasonably consistent along the diagonal in the matrix. This indicates that the correlation depends on the time between observations than their absolute times. The estimated correlation matrix for this data is given in table 1. The correlations show some tendency of decrease with increasing time lag. Assuming stationarity, a single correlation estimate can be obtained for each distinct value of the time separation or lag, $\left|t_{i j}-t_{i k}\right|$. This corresponds to pulling observation pairs along the diagonals of the scatter plot matrix. The autocorrelation function takes the value as in table 2 .

Before we proceed with the analysis, lets look at some theory. $y_{i j} j=1,2, \ldots, n$ be the sequence of observed measurements on the $i t h$ of the m subjects and $t_{j}, j=1,2, \ldots, n$ be the corresponding times at which the measurements are taken on each unit. Associated with each $y_{i j}$ are the values, $x_{i j k}, k=1,2, \ldots, p$ of p explanatory variables. We assume that $y_{i j}$ are realizations of random variables $Y_{i j}$ which follow the regression model

$$
Y_{i j}=\beta_{1} x_{i j 1}+\cdots+\beta_{p} x_{i j p}+\varepsilon_{i j},
$$

In the classical linear model we assume the errors to be mutually independent normal random variables. In our context, the longitudinal structure of the data means that we expect the errors to be correlated within subjects.
Let $\boldsymbol{y}_{i}=\left(y_{i 1}, y_{i 2}, \ldots, y_{i n}\right)$ be the observed sequence of measurements on the $i t h$ subject and $\boldsymbol{y}=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{m}\right)$ be the complete set of $N=n m$ observations. Let \mathbf{X} be the matrix of explanatory variables.

$$
Y \sim M V N\left(X \beta, \sigma^{2} V\right)
$$

The Uniform Correlation Model

In this model we assume that there is positive correlation between any two measurements.

The Exponential Correlation Model

The correlation between a pair of measurements on the same unit decays towards zero as the time separation between measurements increases.
The exponential correlation model is sometimes called the first order autoregressive model.

For the data on pigs we fit a couple of models. We require the data in long format

1. Ordinary least squares ignoring correlation

2. Independent correlation model

. xtgee week time, i(Id) corr(ind)

```
Iteration 1: tolerance = 1.848e-15
```



```
    xtcorr ## estimates the correlation matrix
Estimated within-Id correlation matrix R:
```

	c1	c2	c3	c4	c5	c6	c 7	c8	c9
r1	1.0000								
r2	0.0000	1.0000							
r3	0.0000	0.0000	1.0000						
r4	0.0000	0.0000	0.0000	1.0000					
r5	0.0000	0.0000	0.0000	0.0000	1.0000				
r6	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000			
r7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000		
r8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
r9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

3. Exponential correlation model

. xtcorr

Estimated within-Id correlation matrix R :

	c1	c2	c3	C4	c5	c6	c 7	c8	c9
r1	1.0000								
r2	0.9172	1.0000							
r3	0.8413	0.9172	1.0000						
r4	0.7716	0.8413	0.9172	1.0000					
r5	0.7077	0.7716	0.8413	0.9172	1.0000				
r6	0.6491	0.7077	0.7716	0.8413	0.9172	1.0000			
r7	0.5954	0.6491	0.7077	0.7716	0.8413	0.9172	1.0000		
r8	0.5461	0.5954	0.6491	0.7077	0.7716	0.8413	0.9172	1.0000	
r9	0.5008	0.5461	0.5954	0.6491	0.7077	0.7716	0.8413	0.9172	1.0000

4. Between effects WLS (usually done in case of unbalanced data instead of OLS)
. xtreg week time, be wls i(Id)

5. Random-effects model

6. xtreg, mle
. xtreg week time, i(id) mle

Note that, xtreg, re and xtreg, mle give the same estimates.

The following table might be useful for future reference. To learn more explore the xt set of commands in STATA

If I want to do	STATA command
OLS	regres Y X
Between-effects model (WLS)	xtreg Y X, be i (id) wls if data is unbalanced specify wls instead of OLS, default is OLS
Random-effects model (mixed)	xtreg Y X, re i (id)
Fixed effect model (within)	xtreg Y X, fe i (id)
MLE random effect model	xtreg Y X, i (id) mle
Population average model	xtreg Y X, pa i (id) Thiscommand is equivalent to xtgee Y X, f(gaussian) link (id) corr (exc)
Generalized least squares	xtgls Y X, i(id) corr (ar1 or ind) See STATA help before you use this command
Population averaged panel data using GEE	xtgee Y X, f (family) l (link) corr (corre lation) i (id) forexample: xtgee Y X1 X2, f(gauss) l (id) corr (exc) i (id) would estimate population-averaged linear regression with equal correlation comparable to random-effects regression fro xtreg

