
Wednesday 13 February 2002 
 
Analysis of pigs data 
 
Data: Body weights of 48 pigs at 9 successive follow-up visits. 
 
This is an equally spaced data. It is always a good habit to reshape the data, so we can 
easily switch form wide to long or long to wide depending on the required analysis. The 
data is in the wide format; let’s reshape it into long format.  
 
. reshape groups time 1-9 ## Since we have observations at 9 time 
points 
 
. reshape vars week ## declare the variables 
 
. reshape cons Id ## declare constants 
 
. reshape long (wide) 
 
While reshaping the data from any format, the first three steps are the same. The lat 
command, reshape long or reshape wide depends on the structure of the 
original data.  
 
Now we have the data in long format, to go into the wide form, just type reshape 
wide. You don’t have to repeat the first three commands.  
 
Exploratory analysis 
 
Lets just make some scatter plots of the data. First we plot the scatter plot matrix. For this 
we require the data in wide format.  
 
. reshape wide 
 
. graph week1 week2 week3 week4 week5 week6 week7 week8 week9, matrix 
half 
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What do you conclude from the above scatter plot matrix? 
 
 
 
 
 
 
 
 
 
 
 
To see if the pigs gained weight over time lets plot the line (spaghetti) plot. For this we 
need the data in the long form. 
 
. reshape long 
 
. sort Id time 
 
 
 
 
 
 
 



. graph week time, c(L) s(i) xlab(2 4 6 8) ylab rlab 
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What do you conclude from the graph? 
 
 
 
 
 
 
 
 
 
The above figure is enough to explore the growth data. It is hard to pick out individual 
response profiles. We can add a second display, obtained form first standardizing each 
observation. This is achieved by, subtracting the mean, and dividing by the standard 
deviation of the 48 observations at each time (week). For this we would need the data in 
wide format. 
 
. reshape wide 
 
 
 
 
 
 
 



 
Now do the following for each of week1, week2, …, week9 
. sum week1 
 

Variable |     Obs        Mean   Std. Dev.       Min        Max 

---------+----------------------------------------------------- 

   week1 |      48    25.02083   2.468866         20         31   
. gen Sweek1 = (week1 – 25.02)/2.47 
 
After you do this, we will have 9 new variables. To make the plot, again reshape long. 
 
. sort Id time 

. graph  Sweek time, c(L) s(.) xlab(2 4 6 8) ylab(-3 -2 -1 0 1 2 3) 
rlab(-3 -2  -1 0 1 2 3) 
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The plot is able to highlight the degree of tracking, animals tend to maintain their relative 
size over time. 
 
 
 
 
 



Exploring the correlation structure 
 
Auto-correlation function. For this we require the data in long format. 
 
. autocor week time Id 
 
Table 1 
 
      |    time1    time2    time3    time4    time5    time6    time7   time8    time9 
----------+------------------------------------------------------------------------------ 
time1 |   1.0000  
time2 |   0.9156   1.0000  
time3 |   0.8015   0.9118   1.0000  
time4 |   0.7958   0.9084   0.9582   1.0000  
time5 |   0.7494   0.8809   0.9280   0.9621   1.0000  
time6 |   0.7051   0.8353   0.9058   0.9327   0.9219   1.0000  
time7 |   0.6551   0.7759   0.8435   0.8681   0.8546   0.9633   1.0000  
time8 |   0.6255   0.7133   0.8167   0.8293   0.8104   0.9280   0.9586    1.0000  
time9 |   0.5581   0.6638   0.7689   0.7856   0.7856   0.8893   0.9170    0.9695 1.0000 
-----------------------------------------------------------------------------------------  
     
Table 2 
       acf  
  1.  .9425781   
  2.  .8870165   
  3.  .8462396   
  4.  .7962576   
  5.  .7724156   
  6.  .7121489   
  7.  .6407955   
  8.  .5581002   
 
 

Autocorrelation Scatterplot
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Notice from the main diagonal of the scatter plot matrix there is positive correlation 
between repeated observations on the same animal that are 1 week apart. The degree of 
correlation decreases as the observations are moved farther from the diagonals. Also the 
correlation is reasonably consistent along the diagonal in the matrix. This indicates that 
the correlation depends on the time between observations than their absolute times. The 
estimated correlation matrix for this data is given in table 1. The correlations show some 
tendency of decrease with increasing time lag. Assuming stationarity, a single correlation 
estimate can be obtained for each distinct value of the time separation or lag, |tij – tik|. This 
corresponds to pulling observation pairs along the diagonals of the scatter plot matrix. 
The autocorrelation function takes the value as in table 2. 
 
Before we proceed with the analysis, lets look at some theory. 
yij j = 1, 2, …, n be the sequence of observed measurements on the ith of the m subjects 
and tj, j = 1, 2, …, n be the corresponding times at which the measurements are taken on 
each unit. Associated with each yij are the values, xijk, k = 1, 2, …, p of p explanatory 
variables. We assume that yij are realizations of random variables Yij  which follow the 
regression model 
 

,11 ijijppijij xxY εββ +++= L  

 
 
In the classical linear model we assume the errors to be mutually independent normal 
random variables. In our context, the longitudinal structure of the data means that we 
expect the errors to be correlated within subjects. 
Let yi = (yi1, yi2, …, yin) be the observed sequence of measurements on the ith subject and 
y = (y1, y2, …, ym) be the complete set of N = nm observations. Let X be the matrix of 
explanatory variables.  

),(~ 2VXMVNY σβ  

 
The Uniform Correlation Model 
 
In this model we assume that there is positive correlation between any two 
measurements. 
 
The Exponential Correlation Model 
 
The correlation between a pair of measurements on the same unit decays towards zero as 
the time separation between measurements increases.  
The exponential correlation model is sometimes called the first order autoregressive 
model. 
 
 
 
 
 
 
 



For the data on pigs we fit a couple of models. We require the data in long format 
 

1. Ordinary least squares ignoring correlation  
 
.regress week time 

 
Source |       SS       df       MS                  Number of obs =     432 
---------+------------------------------               F(  1,   430) = 5757.41 
   Model |  111060.882     1  111060.882               Prob > F      =  0.0000 
Residual |  8294.72677   430  19.2900622               R-squared     =  0.9305 
---------+------------------------------               Adj R-squared =  0.9303 
   Total |  119355.609   431  276.927167               Root MSE      =   4.392 
 
------------------------------------------------------------------------------ 
    week |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    time |   6.209896   .0818409     75.878   0.000       6.049038    6.370754 
   _cons |   19.35561   .4605447     42.028   0.000       18.45041    20.26081 
------------------------------------------------------------------------------ 

 
2. Independent correlation model 
 
. xtgee week time, i(Id) corr(ind) 

 
Iteration 1: tolerance = 1.848e-15 
 
GEE population-averaged model                   Number of obs      =       432 
Group variable:                         Id      Number of groups   =        48 
Link:                             identity      Obs per group: min =         9 
Family:                           Gaussian                     avg =       9.0 
Correlation:                   independent                     max =         9 
                                                Wald chi2(1)       =   5757.41 
Scale parameter:                  19.29006      Prob > chi2        =    0.0000 
 
Pearson chi2(430):                 8294.73      Deviance           =   8294.73 
Dispersion (Pearson):             19.29006      Dispersion         =  19.29006 
 
------------------------------------------------------------------------------ 
    week |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    time |   6.209896   .0818409     75.878   0.000       6.049491    6.370301 
   _cons |   19.35561   .4605447     42.028   0.000       18.45296    20.25826 
------------------------------------------------------------------------------ 
 

xtcorr   ## estimates the correlation matrix 
 
Estimated within-Id correlation matrix R: 
 
        c1      c2      c3      c4      c5      c6      c7      c8      c9 
r1  1.0000 
r2  0.0000  1.0000 
r3  0.0000  0.0000  1.0000 
r4  0.0000  0.0000  0.0000  1.0000 
r5  0.0000  0.0000  0.0000  0.0000  1.0000 
r6  0.0000  0.0000  0.0000  0.0000  0.0000  1.0000 
r7  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  1.0000 
r8  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  1.0000 
r9  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  1.0000 
 
 



3. Exponential correlation model 
 
. xtgee week time, i(Id) corr(ar1) t(time) 

 
Iteration 1: tolerance = .02516015 
Iteration 2: tolerance = .00009265 
Iteration 3: tolerance = 4.393e-07 
 
GEE population-averaged model                   Number of obs      =       432 
Group and time vars:               Id time      Number of groups   =        48 
Link:                             identity      Obs per group: min =         9 
Family:                           Gaussian                     avg =       9.0 
Correlation:                         AR(1)                     max =         9 
                                                Wald chi2(1)       =   6255.06 
Scale parameter:                  19.35735      Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
    week |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    time |   6.272119   .0793047     79.089   0.000       6.116685    6.427553 
   _cons |   18.84162   .6759819     27.873   0.000       17.51672    20.16652 
------------------------------------------------------------------------------ 
 
 
. xtcorr 
 
 
Estimated within-Id correlation matrix R: 
 
        c1      c2      c3      c4      c5      c6      c7      c8      c9 
r1  1.0000 
r2  0.9172  1.0000 
r3  0.8413  0.9172  1.0000 
r4  0.7716  0.8413  0.9172  1.0000 
r5  0.7077  0.7716  0.8413  0.9172  1.0000 
r6  0.6491  0.7077  0.7716  0.8413  0.9172  1.0000 
r7  0.5954  0.6491  0.7077  0.7716  0.8413  0.9172  1.0000 
r8  0.5461  0.5954  0.6491  0.7077  0.7716  0.8413  0.9172  1.0000 
r9  0.5008  0.5461  0.5954  0.6491  0.7077  0.7716  0.8413  0.9172  1.0000 
 
 

4. Between effects WLS (usually done in case of unbalanced data instead of OLS) 
 
. xtreg week time, be wls i(Id) 
 
 
 
 
 
 
 
 
 
 
 
 



5. Random-effects model 
 
. xtreg week time, re i(Id) 

 
Random-effects GLS regression                   Number of obs      =       432 
Group variable (i) : Id                         Number of groups   =        48 
 
R-sq:  within  = 0.9851                         Obs per group: min =         9 
       between = 0.0000                                        avg =       9.0 
       overall = 0.9305                                        max =         9 
 
Random effects u_i ~ Gaussian                   Wald chi2(1)       =  25271.50 
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
    week |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    time |   6.209896   .0390633    158.970   0.000       6.133333    6.286458 
   _cons |   19.35561    .603139     32.091   0.000       18.17348    20.53774 
---------+-------------------------------------------------------------------- 
 sigma_u |  3.8912529 
 sigma_e |  2.0963559 
     rho |  .77505208   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
 
 

6. xtreg, mle 
 
 . xtreg week time, i(id) mle 

 
 
Random-effects ML regression                    Number of obs      =       432 
Group variable (i) : Id                         Number of groups   =        48 
 
Random effects u_i ~ Gaussian                   Obs per group: min =         9 
                                                               avg =       9.0 
                                                               max =         9 
 
                                                LR chi2(1)         =   1624.57 
Log likelihood  = -1014.9268                    Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
    week |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    time |   6.209896   .0390124    159.178   0.000       6.133433    6.286359 
   _cons |   19.35561   .5974055     32.399   0.000       18.18472    20.52651 
---------+-------------------------------------------------------------------- 
/sigma_u |    3.84935   .4058114      9.486   0.000       3.053974    4.644725 
/sigma_e |   2.093625   .0755471     27.713   0.000       1.945555    2.241694 
---------+-------------------------------------------------------------------- 
     rho |    .771714   .0393959                          .6876303    .8413114 
------------------------------------------------------------------------------ 
Likelihood ratio test of sigma_u=0:  chi2(1) =   472.65   Prob > chi2 = 0.0000 
 
 

Note that, xtreg, re and xtreg, mle  give the same estimates. 
 
 
 



The following table might be useful for future reference. To learn more explore the xt 
set of commands in STATA 
 
If I want to do  STATA command 
OLS regress Y X 
Between-effects model (WLS) xtreg Y X, be i(id) wls 

if data is unbalanced specify wls instead of 
OLS, default is OLS 

Random-effects model (mixed) xtreg Y X, re i(id)  
Fixed effect model (within) xtreg Y X, fe i(id) 
MLE random effect model xtreg Y X, i(id) mle 
Population average model xtreg Y X, pa i(id)  

This command is equivalent to  
xtgee Y X, f(gaussian) 
link(id) corr(exc) 

Generalized least squares xtgls Y X, i(id) corr(ar1 or 
ind) 
See STATA help before you use this 
command 

Population averaged panel data using GEE xtgee Y X, f(family) l(link) 
corr(correlation) i(id) 
for example: 
xtgee Y X1 X2, f(gauss) l(id) 
corr(exc) i(id) 
would estimate population-averaged linear 
regression with equal correlation 
comparable to random-effects regression 
fro xtreg  

 
 

 


