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Statistical Background on 
Multi-level Models

• Multi-level models
- Main ideas

- Conditional

- Marginal

- Contrasting Examples
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A Rose is a Rose is a…

• Multi-level model

• Random effects model

• Mixed model

• Random coefficient model

• Hierarchical model
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Multi-level Models – Main Idea
• Biological, psychological and social processes that 

influence health occur at many levels:
– Cell
– Organ
– Person
– Family
– Neighborhood
– City
– Society

• An analysis of risk factors should consider:
– Each of these levels
– Their interactions

Health 
Outcome
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Example: Alcohol Abuse
Level:

1. Cell: Neurochemistry 
2. Organ:    Ability to metabolize ethanol
3. Person:   Genetic susceptibility to addiction
4. Family:    Alcohol abuse in the home
5. Neighborhood: Availability of bars
6. Society: Regulations; organizations; 

social norms
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Example: Alcohol Abuse; Interactions 
among Levels

5 Availability of bars and
6 State laws about drunk driving

4 Alcohol abuse in the family  and
2 Person’s ability to metabolize ethanol

3 Genetic predisposition to addiction and
4 Household environment

6 State regulations about intoxication and
3 Job requirements

Level:
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Notation:
Population

Neighborhood:  
i=1,…,Is

State: s=1,…,S

Family: j=1,…,Jsi

Person: k=1,…,Ksij

Outcome: Ysijk
Predictors: Xsijk

Person: sijk

( y1223 , x1223 )
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Notation (cont.)
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Multi-level Models: Idea
Predictor VariablesLevel:

Alcohol
Abuse

Response

Person’s 
Income

Family 
Income

Percent poverty 
in neighborhood

State support 
of the poors

sij

si

sijk

X.n

X.s

X.f

X.p

Ysijk

1.

2.

3.

4.
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Digression on Statistical Models

• A statistical model is an approximation to reality

• There is not a “correct” model; 
– ( forget the holy grail )

• A model is a tool for asking a scientific question;
– ( screw-driver vs. sludge-hammer )

• A useful model combines the data with prior 
information to address the question of interest.

• Many models are better than one.
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Generalized Linear Models (GLMs)
g( µ ) = β0 + β1*X1 + … + βp*Xp

where: µ = E(Y|X) = mean

Model Response g( µ ) Distribution Coef Interp

Linear
Continuous

(ounces)
µ Gaussian

Change in avg(Y) 
per unit change in 

X

Log Odds Ratio

Log Relative Risk

Logistic
Binary

(disease)
log Binomial

Log-
linear

Count/Times 
to events

log( µ ) Poisson

µ
(1-µ)
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Generalized Linear Models (GLMs)
g( µ ) = β0 + β1*X1 + … + βp*Xp

Example: Age & Gender

Gaussian – Linear: E(y) = β0 + β1Age + β2Gender

β1 = Change in Average Response per 1 unit increase in Age, 
Comparing people of the SAME GENDER.

WHY?
Since:  E(y|Age+1,Gender) = β0 + β1(Age+1) + β2Gender

And: E(y|Age ,Gender) = β0 + β1Age + β2Gender

∆E(y) =              β1
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Generalized Linear Models (GLMs)
g( µ ) = β0 + β1*X1 + … + βp*Xp

Example: Age & Gender

Binary – Logistic: log{odds(Y)} = β0 + β1Age + β2Gender

β1 = log-OR of “+ Response” for a 1 unit increase in Age, 
Comparing people of the SAME GENDER.

WHY?
Since:  log{odds(y|Age+1,Gender)} = β0 + β1(Age+1) + β2Gender

And: log{odds(y|Age    ,Gender)} = β0 + β1Age + β2Gender

∆ log-Odds =              β1

log-OR =              β1
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Generalized Linear Models (GLMs)
g( µ ) = β0 + β1*X1 + … + βp*Xp

Example: Age & Gender

Counts – Log-linear:    log{E(Y)} = β0 + β1Age + β2Gender

β1 = log-RR for a 1 unit increase in Age, 
Comparing people of the SAME GENDER.

WHY?

Verify for Yourself Tonight
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Most Important Assumptions of 
Regression Analysis?

A. Data follow normal distribution

B. All the key covariates are included in the modelB. All the key covariates are included in the model

C. Xs are fixed and known

D. Responses are independentD. Responses are independent
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Within-Cluster Correlation
• Fact: two responses from the same family 

tend to be more like one another than two 
observations from different families

• Fact: two observations from the same 
neighborhood tend to be more like one 
another than two observations from different 
neighborhoods

• Why?
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Why?  (Family Wealth Example)

Great-Grandparents

You

Parents

Grandparents

GOD
Grandparents

Parents

You

Great-Grandparents
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Multi-level Models: Idea
Predictor Variables

Alcohol
Abuse

Response

Person’s 
Income

Family 
Income

Percent poverty 
in neighborhood

State support 
of the poors

sij

si

sijk

Level:

X.n

X.s

X.f

X.p

Ysijk

1.

2.

3.

4.

Bars  a.nsi

Drunk Driving Laws  a.ss 

Unobserved 
random intercepts

Genes  a.fsij
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Key Components of Multi-level Model

• Specification of predictor variables from 
multiple levels
– Variables to include
– Key interactions

• Specification of correlation among 
responses from same clusters

• Choices must be driven by the scientific 
question
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Multi-level Shmulti-level

• Multi-level analysis of social/behavioral 
phenomena: an important idea

• Multi-level models involve predictors from 
multi-levels and their interactions

• They must account for correlation among 
observations within clusters (levels) to make 
efficient and valid inferences. 
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Key Idea for Regression with 
Correlated Data

Must take account of correlation to:

• Obtain valid inferences
– standard errors
– confidence intervals
– posteriors

• Make efficient inferences
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Logistic Regression Example: 
Cross-over trial

Ordinary logistic regression:

• Response: 1-normal; 0- alcohol dependence

• Predictors: period (x1); treatment group (x2)

• Two observations per person

• Parameter of interest: log odds ratio of 
dependence: treatment vs placebo

Mean Model:    log{odds(AD)} = β0 + β1Period + β2Trt



23

Results:
estimate, (standard error)

Model
Variable Ordinary Logistic 

Regression
Account for 
correlation

Intercept 0.66
(0.32)
-0.27
(0.38)
0.56

(0.38)

0.67
(0.29)

Period -0.30
(0.23)

Treatment 0.57
(0.23)

( β0 )

( β1 )

( β2 )

Similar estimates,
WRONG Standard Errors (& Inferences) for OLR



24

Variance of Least Squares and ML Estimators 
of Slope –vs- First Lag Correlation

Variance reported by LS

True 
variance of 
LS Variance of mle

Source: DHLZ 2002 (pg 19)
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Simulated Data: Non-Clustered

Cluster Number (Neighborhood)

A
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Simulated Data: Clustered

Cluster Number (Neighborhood)

A
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Within-Cluster Correlation

• Correlation of two observations from 
same cluster = 

Total Var – Within Var
Total Var

• Non-Clustered = (9.8-9.8) / 9.8 = 0

• Clustered = (9.8-3.2) / 9.8 = 0.67
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Models for Clustered Data

• Models are tools for inference

• Choice of model determined by scientific question

• Scientific Target for inference?
– Marginal mean:

• Average response across the population 
– Conditional mean:

• Given other responses in the cluster(s) 
• Given unobserved random effects
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Marginal Models
• Target – marginal mean or population-average 

response for different values of predictor variables
• Compare Groups
• Examples:

– Mean alcohol consumption for Males vs Females
– Rates of alcohol abuse for states with active 

addiction treatment programs vs inactive states

• Public health (a.k.a. population) questions

ex. mean model:  E(AlcDep) = β0 + β1Gender
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Marginal GLMS for Multi-level Data: 
Generalized Estimating Equations (GEE)
• Mean Model: (Ordinary GLM - linear, logistic,..)

– Population-average parameters
– e.g. log{ odds(AlcDepij) } = β0 + β1Genderij

subject i in cluster j

• Association Model:  (for observations in clusters)
– e.g. log{ Odds Ratio(Yij,Ykj) } = α0

two different subjects (i & k) in cluster j

• Solving GEE (DHLZ, 2002) gives nearly efficient 
and valid inferences about population-average 
parameters
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OLR vs GEE
Cross-over Example

Model

log( OR )
(association) 

0.0 3.56
(0.81)

Variable Ordinary 
Logistic 

Regression

GEE
Logistic 

Regression
Intercept 0.66

(0.32)
-0.27
(0.38)
0.56

(0.38)

0.67
(0.29)

Period -0.30
(0.23)

Treatment 0.57
(0.23)
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Marginal Model Interpretations
• log{ odds(AlcDep) } = β0 + β1Period + β2trt

= 0.67 + (-0.30)Period + (0.57)trt

TRT Effect: (placebo vs. trt)
OR = exp( 0.57 ) = 1.77,    95% CI (1.12, 2.80)

Risk of Alcohol Dependence is almost twice as high on 
placebo, regardless of, (adjusting for), time period 

Since:  log{odds(AlcDep|Period, pl)} = β0 + β1Period + β2

And: log{odds(AlcDep|Period, trt)}  = β0 + β1Period

∆ log-Odds       =              β2

OR           =       exp( β2 )

WHY?
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Conditional Models

• Conditional on other observations in cluster
– Probability a person abuses alcohol as a function 

of the number of family members that do
– A person’s average alcohol consumption as a 

function on the average in the neighborhood

• Use other responses from the cluster as 
predictors in regressions like additional 
covariates

ex:    E(AlcDepij) = β0 + β1Genderij + β2AlcDepj
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Conditional on Other Responses:     
- Usually a Bad Idea -

• Definition of “other responses in cluster” 
depends on size/nature of cluster
– e.g.  “number of other family members who do”

• 0 for a single person means something different 
that 0 in a family with 10 others

• The “risk factors” may affect the entire cluster; 
conditioning on the responses for the others 
will dilute the risk factor effect
– Two eyes example

ex:  log{odds(Blindi,Left)} = β0 + β1Sun + β2Blindi,Right

≈ 0
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Conditional Models 

• Conditional on unobserved latent 
variables or “random effects”
– Alcohol use within a family is related 

because family members share an 
unobserved “family effect”: common genes, 
diets, family culture and other unmeasured 
factors

– Repeated observations within a 
neighborhood are correlated because 
neighbors share: common traditions, 
access to services, stress levels,… 
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Random Effects Models
• Latent (random) effects are unobserved 

– inferred from the correlation among residuals

• Random effects models describe the marginal 
mean and the source of correlation in one equation 

• Assumptions about the latent variables determine 
the nature of the associations 
– ex:  Random Intercept = Uniform Correlation

ex: E(AlcDepij | bj) = β0 + β1Genderij + bj

where:  bj ~ N(0,σ2)

Cluster specific 
random effect
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OLR vs R.E.
Cross-over Example

Model

log(σ )
(association) 

0.0 5.0
(2.3)

Variable Ordinary 
Logistic 

Regression

Random Int. 
Logistic 

Regression
Intercept 0.66

(0.32)
-0.27
(0.38)
0.56

(0.38)

2.2
(1.0)

Period -1.0
(0.84)

Treatment 1.8
(0.93)
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Conditional Model Interpretations

• log{ odds(AlcDepi | bi) }
= β0 + β1Period + β2trt + bi

= 2.2 + (-1.0)Period + (1.8)trt + bi

where:  bi ~ N(0,52)

ith subject’s latent 
propensity for Alcohol 

Dependence

TRT Effect: (placebo vs. trt)
OR = exp( 1.8 ) = 6.05,    95% CI (0.94, 38.9)

A Specific Subject’s Risk of Alcohol 
Dependence is  6 TIMES higher on placebo, 
regardless of, (adjusting for), time period 
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Conditional Model Interpretations
WHY?

Since:  log{odds(AlcDepi|Period, pl, bi) )} = β0 + β1Period + β2 + bi

And: log{odds(AlcDep|Period, trt, bi) )}  = β0 + β1Period       + bi

∆ log-Odds       =              β2

OR           =       exp( β2 )

• In order to make comparisons we must keep the 
subject-specific latent effect (bi) the same. 

• In a Cross-Over trial we have outcome data for each 
subject on both placebo & treatment

• What about in a usual clinical trial / cohort study?
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Marginal vs. Random Effects Models
• For linear models, regression coefficients in 

random effects models and marginal models 
are identical: 
average of linear function = linear function of average

• For non-linear models, (logistic, log-linear,…) 
coefficients have different meanings/values, 
and address different questions
- Marginal models -> population-average 

parameters

- Random effects models -> cluster-specific
parameters



41

Marginal –vs- Random Intercept Model
log{odds(Yi) } = β0 + β1*Gender VS.
log{odds(Yi | ui) } = β0 + β1*Gender + ui

cluster 
specific 

comparisons

population 
prevalences

Female
Male

Female

Male

Source: 
DHLZ 2002
(pg 135)
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Marginal -vs- Random Intercept Models; 
Cross-over Example

Model
Random-

Effect Logistic 
Regression

2.2
(1.0)
-1.0

(0.84)
1.8

(0.93)

Log OR 
(assoc.)

0.0 3.56
(0.81)

5.0
(2.3)

Variable Ordinary 
Logistic 

Regression

Marginal (GEE) 
Logistic 

Regression
Intercept 0.66

(0.32)
-0.27
(0.38)
0.56

(0.38)

0.67
(0.29)

Period -0.30
(0.23)

Treatment 0.57
(0.23)
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Comparison of Marginal and 
Random Effect Logistic Regressions
• Regression coefficients in the random effects 

model are roughly 3.3 times as large

– Marginal:  population odds (prevalence 
with/prevalence without) of  AlcDep is exp(.57) = 
1.8 greater for placebo than on active drug;
population-average parameter

– Random Effects: a person’s odds of AlcDep is 
exp(1.8)= 6.0 times greater on placebo than on 
active drug;
cluster-specific, here person-specific, parameter

Which model is better? They ask different questions.
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Marginalized Multi-level Models
• Heagerty (1999, Biometrics); Heagerty and 

Zeger (2000, Statistical Science)

• Model:
– marginal mean as a function of covariates
– conditional mean given random effects as a 

function of marginal mean and cluster-specific 
random effects

• Random Effects allow flexible association 
models, but public health is usually concerned 
with population-averaged (marginal) questions.
⇒ MMM
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Schematic of Marginal Random-
effects Model
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Model

Ordinary 
Logistic 

Regression

GEE
Logistic 

Regression

0.66
(0.32)

0.67
(0.29)
-0.30
(0.23)
0.57

(0.23)

3.56
(0.81)

-0.27
(0.38)
0.56

(0.38)

0.0log(OR)
(assoc.) 

5.44
(3.72)

5.0
(2.3)

Variable MMM
Logistic

Regression

Random 
Int. Logistic 
Regression

Intercept 0.65
(0.28)
-0.33
(0.22)
0.58

(0.23)

2.2
(1.0)

Period -1.0
(0.84)

Treatment 1.8
(0.93)

Marginal and Random Intercept Models 
Cross-over Example
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Refresher: Forests & Trees
Multi-Level Models:

– Explanatory variables from multiple levels
• Family
• Neighborhood
• State

– Interactions

Must take account of correlation among responses 
from same clusters:
– Marginal:  GEE, MMM
– Conditional:  RE, GLMM
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Illustration of Conditional Models
and Marginal Multi-level Models;

The British Social Attitudes Survey

• Binary Response: Yijk =  
• Levels (notation)

– Year: k=1,…,4  (1983-1986)
– Subject:  j=1,…,264
– District:   i=1,…54
– Overall Sample: N = 1,056

• Levels (conception)
– 1: time within person
– 2: persons within districts
– 3: districts

1  if favor abortion 
0  if not  



49

Covariates at Three Levels
• Level 1: time

– Indicators of time

• Level 2: person
– Class: upper working; lower working
– Gender
– Religion: protestant, catholic, other

• Level 3: district
– Percentage protestant (derived)
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Scientific Questions
• How does a person’s religion influence her probability 

of favoring abortion?

• How does the predominant religion in a person’s 
district influence her probability of favoring abortion?

• How does the rate of favoring abortion differ between 
protestants and otherwise similar catholics?

• How does the rate of favoring abortion differ between 
districts that are predominantly protestant versus 
other religions?

Conditional model

Marginal model
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Conditional Multi-level Model
1. Time: k
2. Person: j
3. District: i

Levels:

Person and district random effects
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Conditional Multi-level Model Results

3

2

1
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Conditional Scientific Answers
• How does a person’s religion influence her 

probability of favoring abortion?

• How does the predominant religion in a 
person’s district influence her probability of 
favoring abortion?

But Wait!…
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Conditional Model Interpretations: 
Model 4

WHY?

log{odds(Fav|Catholic,X,b2,ij,b3,ij) )} = β0+Xβ + β8 + b2,0+ bC+ b3,0

log{odds(Fav|Protestant,X,b2,ij,b3,ij) )} = β0+Xβ + b2,0 + b3,0

OR           =       exp( β8 +    bC )
8     C∆ log-Odds         =              β +    b

OR           ≠ exp( β8 )
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Conditional Model Interpretations: 
Model 4

What happens if you simply report exp(β)??

log{odds(Fav|Catholic,X,b2,ij,b3,ij) )} = β0+Xβ + β8 + b2,0 + bC+ b3,0

log{odds(Fav|Prot/Cath,X,b2,ij,b3,ij) )} = β0+Xβ + b2,0 + bC+ b3,0

OR           = exp( β8 )
8∆ log-Odds         =              β

But there were NO subjects in the study who were 
simultaneously BOTH Catholic AND Protestant

( Similar for % protestant! )
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Marginal Multi-level Model
1. Time: k
2. Person: j
3. District: i

Levels:

Mean Model:

Person and district random effects

Association Model: (Separate)
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Marginal Multi-level Model Results

3

2

1
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Marginal Scientific Answers

• How does the rate of favoring abortion differ between 
protestants and otherwise similar catholics?

• How does the rate of favoring abortion differ between 
districts that are predominantly protestant versus other 
religions?
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Key Points
• “Multi-level” Models:

– Have covariates from many levels and their 
interactions

– Acknowledge correlation among observations 
from within a level (cluster)

• Conditional and Marginal Multi-level models have 
different targets; ask different questions

• When population-averaged parameters are the 
focus, use
– GEE
– Marginal Multi-level Models (Heagerty and Zeger, 

2000)
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Key Points (continued)

• When cluster-specific parameters are the focus, 
use random effects models that condition on 
unobserved latent variables that are assumed to 
be the source of correlation

• Warning: Model Carefully. Cluster-specific 
targets often involve extrapolations where there 
are no actual data for support
– e.g. % protestant in neighborhood given a  

random neighborhood effect


