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Participant Homework - Answer Key 

 
Module I: Statistical Background on Multi-level Models 
 

1. The data from the "Alcohol Dependence" crossover-trial example given in class actually 
pertains to a 2x2 crossover trial of Cerebrovascular disease examined in the text: Analysis 
of Longitudinal Data, (Diggle, Heagerty, Liang & Zeger, 2002.  pg. 148-150 & pg. 180-181) 
and reproduced below.   

 
Data from a 2 x 2 crossover trial on cerebrovscular deficiency adapted from Jones and Kenward 
(1989, p. 90), where treatments A and B are active drug and placebo, respectively; the outcome 
indicates whether an electrocardiogram was judged abnormal (0) or normal (1). 
 
 
 
 

 
 
In SAS's program editor, open and run the program: "Problem 1 xover trial.sas" found on 
the class website to reproduce the results in DHLZ (2002). Interpret the regression 
coefficients and their confidence intervals for the period and treatment effects for both the 
marginal (GEE) and conditional (Random Effect) analyses.  (Note: the results are the same 
as in the Module 1 class notes so you can use them and look over the program later if 
you're short on time.) 

 
 
 Solution: 

From either the SAS output or the Module 1 class notes we have the following table of marginal 
and conditional estimates and their standard errors. 

 
 
 
 
 
 
 
 
 
 
 
  

From these we find Odds Ratios and Confidence Intervals that describe treatment and period 
effects by exponentiating. 

  

  Responses   Period 
Group (1,1) (0,1) (1,0) (0,0) Total 1 2 

AB 22 0 6 6 34 28 22 
BA 18 4 2 9 33 20 22 

  Marginal Conditional 
Parameter Estimate S.E. Estimate S.E. 

Intercept 0.67 0.29 2.27 1.28 
Time Period (2 vs 1) -0.30 0.23 -1.06 0.85 
Treatment   (A vs B) 0.57 0.23 1.89 0.97 
Association 3.56 0.81 5.06 2.13 



 
  Marginal Conditional 

Effect Odds Ratio 95% C.I. Odds Ratio 95% C.I. 
Time Period (2 vs 1) 0.74 (0.47, 1.18) 0.35 (0.06,  1.90)
Treatment   (A vs B) 1.77 (1.11, 2.82) 6.64 (0.96, 45.85)

 
Marginal Effect Interpretations:   
  There does not appear to be a large difference between time periods, as the Odds Ratio of 
0.74 is close to 1, (i.e. no effect) and the Confidence Interval of (0.47, 1.18) substantially overlaps 1. 
We do estimate a statistically significant treatment effect, as the overall Odds of a normal 
electrocardiogram are almost twice as high (OR=1.77) comparing responses on the active drug to 
responses on placebo and the Confidence Interval for this effect ranges from 1.11 to 2.82.   
 
Conditional Effect Interpretations:   
  Again, there does not appear to be a large difference between time periods for a specific 
subject, as the Confidence Interval for the Odds Ratio (0.06, 1.90) substantially overlaps 1. Their 
may be a treatment effect for a given subject, as the overall Odds of a normal electrocardiogram are 
estimated to be six or seven times as high (OR=6.64) comparing the response for a specific subject 
on the active drug to that same subject's response on placebo. The Confidence Interval for this effect 
ranges from 0.96 to 45.85, which does cover 1, (which some may take to indicate a possibility of no 
actual effect), but note that we have used  exp(1.89 ± 2*0.97) to form the 95% C.I. instead of 
the usual exp(1.89 ± 1.96*0.97) to be conservative. More important is the increased 
uncertainty in estimating the subject-specific effect. 

 
 
2. 2. In slides 50 and 53 of the module 1 presentation, results of a conditional and marginal 

logistic multilevel model are presented. Focus on  Model 1 in the tables (the models with the 
simplest association structures). Interpret the regression coefficients for gender and for 
%protestant in each of these two models.   

 
Solution: 
Marginal Model: Slide 53 gives the estimates for the Marginalized Multilevel Model 1: 
 
The Gender comparison, adjusting for Year, Working Class, Religion, & District is given as 
   log-odds(Favoring Abortion | Female, X)   

- log-odds(Favoring Abortion | Male, X)  =  -0.349   
with a standard error of 0.205. Thus, the Odds of Favoring Abortion are estimated to be exp(-0.349) 
= 0.71, or 30% smaller for Females compared to Males, after controlling for Year, Working Class, 
Religion, and District. However, the 95% Confidence Interval for the OR is (0.47, 1.1), indicating 
that this Gender difference is not statistically significant. 
 
The %-Protestant comparison, adjusting for Year, Working Class, Religion, & District is given as 
   log-odds(Favoring Abortion | %Protestant + 1, X)   

- log-odds(Favoring Abortion | %Protestant, X)  =  0.799 
with a standard error of 0.479. Thus, the Odds of Favoring Abortion are estimated to be exp(0.799)  
= 2.22, or twice as high for Districts that have protestant percentages that differ by 1 percent, after 
controlling for Year, Working Class, Religion, and District. Again, the 95% Confidence Interval for 
the OR, (0.85, 5.80) substantially covers 1, indicating we do not find a statistical difference between 
Districts that have protestant percentages that differ by 1 percent.  
 

  
  
 



Conditional Model: Slide 50 gives the estimates for the Conditional Multilevel Model 1: 
 
Recall that the conditional model 1 incorporates latent effects at the person and district level, Hence, 
the results pertain to a specific person within a specific district. Suppose that the specific person is a 
female, the Gender comparison would then attempt to examine what her odds of favoring abortion 
would be if she was in fact a male, (also adjusting for Year, Working Class, Religion, & District). 
Consider the jth female in the ith district who has a subject-specific latent effect b1ij and a district 
specific latent effect b2ij. 
    log-odds(Favoring Abortion | Femaleij, b1ij, b2ij, X)   

- log-odds(Favoring Abortion | Maleij, b1ij, b2ij, X)  =  -0.6 
with a standard error of 0.358. Thus, the Odds of Favoring Abortion are estimated to be exp(-0.6) = 
0.55, or 50%  smaller if this Female somehow became a Male. Of course, if all of the females do 
change into males, this abortion issue may be a moot point. 
 
Similar issues in interpretation exist for the % Protestant comparison with the conditional model. 

 
 
 
3. 3. Download the winbugs software on your laptop or visit the School computer lab to visit the 

BUGS website and watch the movie demo:• 
4. ugs software from the web site 

•http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml•Watch the Winbugs movie at  
•http://www.statslab.cam.ac.uk/~krice/winbugsthemovie.html 

 
 

Solution: 
 Great Movie! The popcorn was a bit salty.... 
 
 Hopefully you were able to try out a couple of the examples located under the help menu.



 
Module II: A two-stage model example: The DZAPS study 
 Below find a table of maximum likelihood estimates of the log relative risk (percent increase per 
10 micrograms per cubic meter) and their statistical standard errors for 6 cities from the 
hypothetical DZAPS study (note: the data are not real). 

 
 
 

City 

 
Log RR   

 
Statistical 
std error  Total Var 

(TVc) 1/TVc  wc  

 
 

 
RR.EB 

se(RR.EB) 

LA 0.30 0.10 0.074 13.541 0.260 0.865 0.31 0.09 
NYC 0.50 0.12 0.078 12.780 0.246 0.816 0.48 0.11 
Chi 0.40 0.15 0.086 11.581 0.222 0.739 0.39 0.13 
Dal 0.00 0.30 0.154 6.500 0.125 0.415 0.22 0.19 
Hou 1.00 0.40 0.224 4.467 0.086 0.285 0.55 0.21 
SD -0.10 0.50 0.314 3.186 0.061 0.203 0.27 0.23 
Over-all 0.369 0.139             

 
 

1. Use the estimates above and their standard errors to estimate the natural variance in the 
true log relative risks across these 6 cities. Follow the calculations made in the lecture for 
module 2.  

 
The Natural Variance is calculated as:   

NV = Variance(beta.hatc) - Average(vc)  = 0.155 - 0.09115 = 0.06385 
 

2. Calculate the overall estimate of the log relative risk weighting the individual city estimates 
by the inverse of their total variances 

 
Overall Estimate:  α̂  = 0.369 

 
 

3. .Calculate the standard error for the overall estimate and make a 95% confidence interval 
for the true population mean. 

 
Standard Error( α̂ ) = 0.139 
 
95% C.I. ≅ α̂  ± 2×se( α̂ ) = 0.369 ± 2×0.139 = (0.092, 0.647) 

 
 
4. Now complete the table above producing the empirical-Bayes estimate and standard error 

for each city 
 
   Please see table above 
 
 

cβ̂
vc

cβ~
cθ



 
5. Compare the Empirical-Bayes and maximum likelihood estimates for San Diego (SD). 

Which estimate do you prefer and why? Comment on whether you think air pollution saves 
lives? 

 
The Empirical-Bayes estimate of 0.23 is a compromise between San Diego's specific MLE of  -0.1 and 
the overall estimate for the six cities of 0.37. Since San Diego's MLE is fairly imprecise, (the standard 
error is 0.50) the Empirical-Bayes estimate "borrows" a good deal of information from the other cities 
and "shrinks" San Diego's estimate towards the overall estimate. It was mentioned in Module I that a 
useful model combines data with prior information to address the question of interest. Prior information 
here would be knowledge that Air Pollution is generally bad for people, contrary to San Diego's negative 
MLE, which would indicate that pollution is a protective factor and "saves lives". Thus, the Empirical-
Bayes estimate is preferred since it more likely represents the true effect of Air Pollution. 
 
 
6.  Fit the two-stage normal-normal model below in Winbugs to re-analyze the NMMAPS 6 

cities data using MCMC.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results:  (after 50,000 samples) 
 
 
 
 
 
 
 
 
 
Discussion: 
 
 Francesca, what would you like to say here? I was going to discuss how the Fully 
Bayesianized versions incorporate the uncertainty in the Natural Variance whereas the 
Empirical-Bayes version above considers it fixed, but the standard errors are all smaller for the 
Full Bayes version and this will probably confuse them.  -- Mike 
 
 

Model    
model{ 
 for( i in 1 : N) 
  { 
   p.hat[i] <-(1/se[i])*(1/se[i]) 
   beta.hat[i] ~dnorm(b[i],p.hat[i]) 
   b[i] <-alpha + u[i] 
   u[i] ~dnorm(0,tau) 
  } 
  tau ~dgamma(0.001,0.001) 
  sigma <- 1 / sqrt(tau) 
  alpha ~ dnorm(0.0,1.0E-6) 
}   
   

Data  list(N=6,beta.hat = c(0.3,0.5,0.4,0.0,1.0,-0.1), se =c(0.10,0.12,0.15,0.30,0.40,0.50))   

Inits    list(alpha =0,tau=1,u=c(0,0,0,0,0,0))   

node  mean  sd 2.50% median 97.50% 
alpha 0.37 0.10 0.16 0.37 0.57
b[1] 0.34 0.08 0.17 0.34 0.50
b[2] 0.43 0.10 0.25 0.42 0.64
b[3] 0.38 0.10 0.18 0.38 0.60
b[4] 0.31 0.16 -0.09 0.34 0.58
b[5] 0.44 0.18 0.17 0.41 0.91
b[6] 0.34 0.18 -0.10 0.35 0.64



Module III: Applications of Multilevel Models to Profiling of Health Care Providers 
 

1. From the Winbugs help menu, copy the  “Institutional ranking” example (look under the 
help menu under Vol I examples)  

 
   Institutional ranking Data 

Hospital No of ops No of deaths 
A 47 0
B 148 18
C 119 8
D 810 46
E 211 8
F 196 13
G 148 9
H 215 31
I 207 14
J 97 8
K 256 29
L 360 24

 
We assume that the failure rates across hospitals are similar in some way. This is equivalent to specifying a 
random effects model for the true failure probabilities pi as follows: 
 
 
 
 
 
 

 
 
 
 
 
 
2. Reproduce the example discussed in class on “Institutional ranking” 

 
Results: (after 100,000 samples)  
 
      Hospital Specific Probabilities of Death (pi.c) 

node  mean  sd 2.50%median 97.50%
pi.c[1] 0.053 0.020 0.018 0.052 0.094
pi.c[2] 0.103 0.022 0.067 0.101 0.152
pi.c[3] 0.071 0.018 0.040 0.069 0.109
pi.c[4] 0.059 0.008 0.045 0.059 0.076
pi.c[5] 0.052 0.013 0.028 0.051 0.079
pi.c[6] 0.069 0.015 0.043 0.068 0.101
pi.c[7] 0.067 0.016 0.038 0.066 0.101
pi.c[8] 0.123 0.022 0.083 0.122 0.171
pi.c[9] 0.070 0.015 0.044 0.069 0.101
pi.c[10] 0.079 0.020 0.045 0.077 0.124
pi.c[11] 0.102 0.018 0.071 0.101 0.140
pi.c[12] 0.069 0.012 0.047 0.068 0.093

 

Let ri = number of deaths for hospital i  
Let ni = number of operations (surgeries) performed at hospital i  
 
  Assume the conditional model: 
   
     ri ~ Binomial(ni , pi) 

     logit(pi) = αc + ai 

     ai ~ N(0,σ 2) 

Where: pi is the hospital specific probability of death



 
Boxplot Comparisons of Hospital Specific Probabilities of Death 
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Caterpillar Comparisons of Hospital Specific Probabilities of Death 
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Histograms of Rank 
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Results Discussion: 
Hospital 8 has the highest probability of surgical death, (Pr(Death)≈0.12), and has a posterior 
probability of approximately 0.60 of having the highest probability of surgical death.  Hospitals 1 & 
5 have the lowest probabilities of surgical death (Pr(Death)≈0.05) with posterior probabilities of 
being the lowest of approximately 0.35 and 0.30 respectively.   
 
3. Discuss whether a marginal model may or may not be appropriate for the analysis of the 

institutional ranking data. 
 

A marginal model could also be used for the institutional ranking data. Fixed effects would be 
included for each hospital and within-hospital correlation could be accounted for using GEE or 
MMM methods. Inference on ranking would then proceed via the estimates and confidence intervals 
for each hospital's probability of surgical death. Benefits of using the conditional model include 
borrowing strength across hospitals, automatic ranking and calculation of uncertainty in the rankings 
via the MCMC draws. Disadvantages include extrapolating away from the data that was actually 
observed. The random effects (conditional) model, essentially compares results for a patient in a 
particular hospital to the results for the patient if that patient had gone to a different hospital, but we 
have no such data. 
 
4. Write an abstract for a scientific journal that summarizes the results of the “Institutional 

ranking” example. Report statistical uncertainty associated with ranking. 
 

 Using mortality data for cardiac surgery on infants, distributions of ranks were created for 12 
hospitals according to their hospital-specific probabilities of death.  The number of operations 
ranged from 47 to 810 across hospitals and the number of deaths ranged from 0 to 46.  Assuming the 
mortality probabilities across hospitals were similar, we specified a random effects model to borrow 
strength across hospitals and account for reliability in the data.  Markov Chain Monte Carlo 
sampling produced posterior distributions of the hospital-specific probabilities of death and of the 
hospital ranks.  These distributions show heavy uncertainty associated with ranking.  The estimated 
probability of surgical death for an 'average infant' among all twelve hospitals was 0.068 (95% 
Posterior Interval: 0.047, 0.093).  Hospital 8 had the highest probability of surgical death, 
(Pr(Death)≈0.12), and has a posterior probability of approximately 0.60 of ranking the worst of the 
12 hospitals.  Hospitals 1 & 5 have the lowest probabilities of surgical death (Pr(Death)≈0.05) with 
posterior probabilities of ranking the best of approximately 0.35 and 0.30 respectively.   
 
 
5. From the case study by Normand and et al JASA 1997, which are the three most “aberrant 

hospitals”? How is the uncertainty in ranking reported? 
 

 The answer to this depends on your definition of an "aberrant hospital", however, from the 4 
ranking methods in Table 4, hospitals 1, 28, and 2 consistently rank among the 9 worst hospitals. 
Unfortunately, estimates of the uncertainty in these rankings does not appear in the tables or 
discussion.  If the uncertainty in the ranks had also been reported, we would see that trying to pick 
the three most aberrant hospitals may be of limited value.  

 



 
Module IV: Applications of Multilevel Models to Spatial Epidemiology 
 

1. From the Winbugs help menu, copy the “Scottish Lip Cancer” example (look under the 
map menu under examples)   

 
The  rates of lip cancer in 56 counties in Scotland have been analysed by Clayton and Kaldor (1987) and 
Breslow and Clayton (1993).  The form of the data includes the observed and expected cases (expected 
numbers based on the population and its age and sex distribution in the county), a covariate measuring the 
percentage of the population engaged in agriculture, fishing, or forestry, and the "position'' of each county 
expressed as a list of adjacent counties. 

 
 
 County Observed Expected Percentage SMR Adjacent 
   cases cases  in agric.  counties 
   Oi Ei  xi 
 _________________________________________________________________   
  1  9 1.4 16 652.2 5,9,11,19 
 2  39 8.7 16 450.3 7,10 
  ...  ... ... ... ... ...   
 56  0 1.8 10 0.0 18,24,30,33,45,55 
 
 

We note that the extreme SMRs (Standardised Mortality Ratios) are based on very few cases. 
 

We may smooth the raw SMRs by fitting a random-effects Poisson model allowing for spatial correlation, 
using the intrinsic conditional autoregressive (CAR) prior proposed by Besag, York and Mollie (1991). For the 
lip cancer example, the model may be written as: 
 
 Oi ~ Poisson(µi) 
 log µi = log Ei + α0 + α1xi / 10 +  bi 
  
where α0  is an intercept term representing the baseline (log) relative risk of disease across the study region, 
xi is the covariate "percentage of the population engaged in agriculture, fishing, or forestry" in district i,  with 
associated regression coefficient α1 and bi is an area-specific random effect capturing the residual or 
unexplained (log) relative risk of disease in area i. We often think of  bi  as representing the effect of latent 
(unobserved) risk factors.  

 
To allow for spatial dependence between the random effects bi in nearby areas, we may assume a CAR prior 
for these terms. 
 
2. Reproduce the statistical analyses performed in class 

 
 

3. For the area with the largest observed SMR, estimate the posterior probability of having 
the largest relative risk of lip cancer 

 
 

4. For the area with the lowest observed SMR, estimate the posterior probability of having 
the largest relative risk of lip cancer . Why do you think the rank of the observed SMR and 
the rank of the smoothed SMR might be different? 

 
 
 
 
 
 


