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SAS PROC MIXED is a flexible program suitable for fitting multilevel models,
hierarchical linear models, and individual growth models. Its position as an
integrated program within the SAS statistical package makes it an ideal choice
for empirical researchers and applied statisticians seeking to do data reduc-
tion, management, and analysis within a single statistical package. Because the
program was developed from the perspective of a “mixed” statistical model
with both random and fixed effects, its syntax and programming logic may
appear unfamiliar to users in education and the social and behavioral sciences
who tend to express these models as multilevel or hierarchical models. The
purpose of this paper is to help users familiar with fitting multilevel models
using other statistical packages (e.g., HLM, MLwiN, MIXREG) add SAS PROC
MIXED to their array of analytic options. The paper is written as a step-by-step
tutorial that shows how to fit the two most common multilevel models:
(a) school effects models, designed for data on individuals nested within natu-
rally occurring hierarchies (e.g., students within classes); and (b) individual
growth models, designed for exploring longitudinal data (on individuals) over
time. The conclusion discusses how these ideas can be extended straighfor-
wardly to the case of three level models. An appendix presents general strate-
gies for working with multilevel data in SAS and for creating data sets at
several levels.

As multilevel models, hierarchical models and individual growth models
increase in popularity, the need for credible and flexible software that can be
used to fit them to data increases. In their 1994 review of the five major software
programs that were then currently available, Kreft, de Leeuw and van der
Leeden (1994) found that only one (BMDP-5V) was integrated into 2 multipur-
pose statistical package. The remaining four required users to conduct prelimi-
nary data reduction and data processing in a different package before outputting
data files to the specialized packages for analysis. Although the last few years
have seen improvements in the front-ends of the two most popular packages—
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HLM (Bryk, Raudenbush, & Congdon, 1996) and MLwiN (Prosser, Rasbash, &
Goldstein, 1996)—many users have sought the inclusion of routines for fitting
multilevel models into the major statistical packages themselves.

In 1992, SAS Institute introduced one such routine—PROC MIXED—into
their large menu of offerings. In subsequent releases, SAS has updated and
expanded the models and options available as part of PROC MIXED to the point
that it is now a reasonable choice for researchers fitting many types of multilevel
models. Although the documentation for PROC MIXED is complex (SAS
Institute, 1992, 1996), and the defaults are often not appropriate for many
models (Latour, Latour, & Wolfinger, 1994; Littell, Milliken, Stroup, & Wolfin-
ger, 1996), the abilty to do data reduction, management, and analysis in a single
software package makes this routine particularly attractive to a wide range of
researchers, o

Because PROC MIXED was developed from a distinctly different perspective
than that employed by most statisticians and empirical researchers in the educa-
tional, social, and behavioral sciences, its syntax and programming logic may
appear unusual to people in these fields (Ferron, 1997). Unlike HLM and
MLwiN, which were written with the kinds of models used by social scientists
in mind, PROC MIXED was written by agricultural and physical scientists
seeking a generalization of the standard linear model that allows for both fixed
and random effects (McLean, Sanders, & Stroup, 1991). Although it is not
immediately obvious based upon the documentation provided by SAS, it is
indeed the case that by properly specifying the mixed model, a data analyst may
fit a variety of specific instances of the multilevel models, hierarchical models,
and individual growth models that have become so popular in educational and
behavioral research (Kreft, 1995; Hox & Kreft, 1994).

The purpose of this paper is to show educational and behavioral statisticians
and researchers how they can use PROC MIXED to fit many common types of
multilevel models. Rather than try to cover a broad array of models (without
providing sufficient depth for the reader to understand the logic behind the
syntax), I focus on two of the most common models: (a) school effects models,
designed for data on individuals nested within naturally occurring hierarchies
(e.g., students within classes, children within families, teachers within schools);

- and (b) individual growth models, designed for exploring longitudinal data (on
individuals) over time. In addition, because the use of PROC MIXED does not
obviate the need for substantial data processing in preparation for analysis, in the
appendix [ present general strategies for working with multilevel data in SAS
and for creating data sets at several levels.

Multilevel models can be expressed in at least three different ways: (a) by
writing separate equations at multiple levels; (b) by writing separate equations
at multiple levels and then substituting in to arrive at a single equation; and
(c) by writing a single equation that specifies the multiple sources of variation.
Bryk and Raudenbush (1992) specify the model for each level separately, and
their software program (HLM) never requires you to substitute back to derive a
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single equation specification. Goldstein (1995) expresses the multilevel model
directly using a single equation, and his software program, MLwiN, works from
that single level representation. PROC MIXED also requires that you provide a
single level representation. For pedagogic reasons, in this paper I take the
middle ground, initially writing the model at multiple levels (kept here to two)
and then substituting in to arrive at a single equation representation.,

To use this paper effectively, a basic understanding of the ideas behind
multilevel modeling, hierarchical modeling, and individual growth ‘modeling is
helpful. Both Bryk and Raudenbush (1992) and Hox (1995) provide excellent
introductions to these topics. In particular, the reader must understand: (a) the
difference between a fixed effect and a random effect; (b) the notion of multiple
levels within a hierarchy; (c) the notion that the error variance-covariance
matrix can take on different structures; and (d) that centering can be a helpful
way of parameterizing models so that the results are more easily interpreted.

This article does not substitute for the comprehensive documentation avail-
able through SAS, including the general PROC MIXED documentation (SAS
Institute, 1992, 1996), Getting Started with PROC MIXED (Latour, Latour, &
Wolfinger, 1994), and The SAS System for Mixed Models (Littell et al., 1996).
My goal is simply to provide a bridge to users already familiar with multilevel
modeling because the SAS documentation is thin in this regard. I have found
that PROC MIXED?s flexibility has led many an unsuspecting user to write a
program, obtain results, and have no idea what mode! has been fit. The goal for
the user, then, is to specify the model and to learn the syntax necessary for
ensuring that this is the model being fit to the data.

Two-Level School Effects Models

I'begin by presenting an overview of strategies for using PROC MIXED to fit
classic two-level school effects models. By two-level school effects models, I am
referring to situations in which you have data at two levels within an organiza-
tional hierarchy—such as students within classes or classes within schools—and
you would like to examine the behavior of a level-1 outcome as a function of
both level-1 and level-2 predictors.

To achieve spme continuity with presentations of these models available
elsewhere, I use the High School and Beyond data example that Bryk and
Raudenbush (1992) include in the 1996 version of HLM for Windows (Bryk et
al., 1996). Readers unfamiliar with this example should consult Chapter Five of
Bryk and Raudenbush (1992) for a fuller description. The data set consists of
information for 7,185 students in 160 schools (with anywhere from 14 to 67
students per school). The student-level (level-1) outcome is MATHACH. The
student level (level-1) covariate is SES. There are two school-level (level-2)
covariates. One is an aggregate of student level characteristics (MEANSES); the
other is a school-level variable (SECTOR). MEANSES and SES are centered at
thc:i glrand mean (they have means of 0). SECTOR, a dummy variable,-is coded 0
and 1.
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single equation specification. Goldstein (1995) expresses the multilevel model
directly using a single equation, and his software program, MLwiN, works from
that single level representation. PROC MIXED also requires that you provide a
single level representation. For pedagogic reasons, in this paper I take the
middle ground, initially writing the model at multiple levels (kept here to two)
and then substituting in to arrive at a single equation representation..

To use this paper effectively, a basic understanding of the ideas behind
multilevel modeling, hierarchical modeling, and individual growth modeling is
helpful. Both Bryk and Raudenbush (1992) and Hox (1995) provide excellent
introductions to these topics. In particular, the reader must understand: (a) the
difference between a fixed effect and a random effect; (b) the notion of multiple
levels within a hierarchy; (¢) the notion that the error variance-covariance
matrix can take on different structures; and (d) that centering can be a helpful
way of parameterizing models so that the results are more easily interpreted.

This article does not substitute for the comprehensive documentation avail-
able through SAS, including the general PROC MIXED documentation (SAS
Institute, 1992, 1996), Getting Started with PROC MIXED (Latour, Latour, &
Wolfinger, 1994), and The SAS System for Mixed Models (Littell et al., 1996).
My goal is simply to provide a bridge to users already familiar with multilevel
modeling because the SAS documentation is thin in this regard. 1 have found
that PROC MIXED's flexibility has led many an unsuspecting user to write a
program, obtain results, and have no idea what model has been fit. The goal for
the user, then, is to specify the model and to learn the syntax necessary for
ensuring that this is the model being fit to the data.

Two-Levei School Effects Models

I begin by presenting an overview of strategies for using PROC MIXED to fit
classic two-level school effects models. By two-level school effects models, I am
referring to situations in which you have data at two levels within an organiza-
tional hierarchy—such as students within classes or classes within schools—and
you would like to examine the behavior of a level-1 outcome as a function of
both level-1 and level-2 predictors.

To achieve some continuity with presentations of these models available
elsewhere, I use the High School and Beyond data example that Bryk and
Raudenbush (1992) include in the 1996 version of HLM for Windows (Bryk et
al., 1996). Readers unfamiliar with this example should consult Chapter Five of
Bryk and Raudenbush (1992) for a fuller description. The data set consists of
information for 7,185 students in 160 schools (with anywhere from 14 to 67
students per school). The student-level (level-1) outcome is MATHACH. The
student level (level-1) covariate is SES. There are two school-level (level-2)
covariates. One is an aggregate of student level characteristics (MEANSES); the
other is a school-level variable (SECTOR). MEANSES and SES are centered at
th; grand mean (they have means of 0). SECTOR, a dummy variable, is coded 0
and 1.
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I begin by fitting an unconditional means model, examining variation in
MATHACH across schools. I then sequentially examine the effects of a school-
level (level-2) predictor (MEANSES) and a student level (level-1) predictor
(student SES). Having examined each type of predictor separately, I conclude
this section of the paper by combining both types of predictors into a single
model. Wherever possible, I use the notation used by Bryk and Raudenbush
(1992). Readers more familiar with Goldstein’s (1995) notation will need to
make periodic translations.

Unconditional Means Model

The unconditional means model can be viewed as a one-way random effects

* ANOVA model. Although there are several different ways to write this model,

one common approach expresses the outcome, Y, as a linear combination of a

grand mean y, a series of deviations from that grand mean (the ;) and a random
error associated with the i"" student in the j* school (r,):

Yy=p+o;+ Ty where
a;~iid N(Oyrge) and  ry~ iid N(0,0?)
This model has one fixed effect () and two variance components—one repre-

senting the variation between school means () and the other representing the
variation among students within schools (¢2). You can fit this model in PROC

MIXED quite easily using the following syntax:

ey

proc mixed;

class school;

model mathach = ;

random school;

Rather than parameterize the model this way, however, consider an alternative
approach—a two-level approach—that generalizes more easily to more complex
models. This strategy expresses the student-level outcome Y;; using a pair of
linked models: one at the student level (level-1) and another at the school-level
(level-2). At level 1, we express a student’s outcome as the sum of an intercept
for the student’s school (Boy) and a random error (r;) associated with the it
student in the j™ school:

Y;=PBy+r; wherer;~ N(O,O'Z) (2a)

At level 2 (the school level), we express the school level intercepts as the sum of
an overall mean (yo) and a series of random deviations from that mean (ug):

Bo,- =Yoo + Upp Where ug; ~ N(0,700) (2b)

Substituting (2b) into (2a) yields the multilevel model:
Y;j= Yoo + ug; + r; where

2 3
ug; ~ N(0,7o0) and r;~ N(@©0,a”)

A
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Notice the direct equivalence between the model in (1) and the model in (3).
The grand mean p is now represented by o, the effect of school (the ;) is now
represented by ug,, and the residual associated with the i student in the j*
school remains r;;. This model can be partitioned into two parts: a fixed part,
which contains the single effect v, (for the overall intercept) and a random part,
which contains two random effects (for the intercept u,, and for the within-
school residual ;). We fit this model to data to estimate both the fixed effect Yoo
(which tells us about the average MATHACH score in the populatiori) and the
two random effects, 1, (which tells us about the variability in school means)
and o? (which tells us about the variability in MATHACH within schools).

Although it may not be immediately obvious, the model in (3) postulates that
the variance and covariance components take on a particular form. First, because
we have not indicated otherwise, we are assuming that the ry and the ug, are
independent. Second, if we combine the variance components for the two
random effects together into a single matrix, we would find a highly structured
block diagonal matrix. For example, if there were three students in each class,

we would have:

( Tooto? T T 000 0 0 0
T Totd? T 000 O 0 0
Too T Tota? 000 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 @
0 0 0 ... 0 0 0
0 0 0. 000 Tpto? 1y Too
0 0 0 000 17 TeHto? Ty
k 0 0 0 000 1y To  Too+o? _

If the number of students per class varied, the size of each of these submatrices
would also vary, although they would still have this common structure. The
variance in MATHACH for any given student is assumed to be 7o, + 2. This
structure is known as compound symmetry. The covariance of MATHACH
scores for any two students in a single class is 7,,. The covariance of MATH-
ACH scores for any two students in different classes is 0.

The representation of the multilevel model in (3) leads to an alternative
specification of the unconditional means model in PROC MIXED. The syntax is:

proc mixed noclprint covtest:
class school;

model mathach = /solution;
random intercept/sub=school;
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After invoking the procedure and identifying any categorical variables (using the
CLASS statement), the MODEL statement specifies the fixed effects and the
RANDOM statement specifies the random effects. Let’s examine this syntax in
detail by focusing on its two major parts: the structural part (the first two lines)
and the modeling part (the second two lines).

Structural specification. The NOCLPRINT option on the PROC MIXED
statement prevents the printing of the CLASS level information giving the
numbers of schools involved in the analysis. The first time you run the program,
you might not want to include this option to ensure that all relevant groups are
“included in the analysis. The COVTEST option on the PROC MIXED statement
tells SAS that you would like hypothesis tests for the variance and covariance
components (described below). This option is not necessary if you are running a
" version of SAS prior to 6.12. The CLASS statement indicates that SCHOOL is a
classification variable whose values do not contain quantitative information.

Model specification. You use the MODEL statement to indicate fixed effects
and the RANDOM statement to indicate random effects. The MODEL statement
here may appear odd because it seems as if it has no predictors. In reality, it has
one implied predictor, the vector 1, which represents the intercept. The
/SOLUTION option asks SAS to print the estimates for the fixed effects. PROC
MIXED, like HLM, includes an intercept by default. Other programs, such as
MLwiN and Hedeker's MIXREG (Hedeker & Gibbons, 1996) require you to
specify the intercept explicitly. If you would like to fit a model without an
intercept, however, it is very easy: just add the option /NOINT to the model
statement.

The RANDOM statement is crucial and its specification is usually the tricki-
est part about fitting mixed models. By default, there is always at least one
random effect, here the lowest-level (within-school) residual r;;. (This is similar
to the default random effect in a typical regression model, representing the error
term.) By specifying the intercept on this RANDOM statement, we are indicat-
ing the presence of a second random effect—that the INTERCEPT in the
MODEL statement (which is not explicitly present but implied) should be
treated not only as a fixed effect (represented by vo,) but also as a RANDOM

~effect (represented by 7,,). The SUB= option on the RANDOM statement
specifies the multilevel structure, indicating how the level-1 units are divided
into level-2 units. Here, the subgroups are designated by the classification

. variable SCHOOL. Without this statement, the model fit would not be that in (3)
above, but would rather be Y;; = yo + r;;- In other words, the variance compo-
nent representing the effect of school (for the ug; which has variance 7o) would
be omitted.

The results of fitting this model are presented below. For comparison, exam-
ine the equivalent model fit using HLM (Bryk and Raudenbush 1992; pp.
62-66).
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REML Estimation Iteration History

Iteration Evaluations Objective Criterion
0 1 34899.608417
1 2 33913.503461 0.00000109
2 1 33913.484655 0.00000000

Convergence criteria met.
Covariance Parameter Estimates (REML) ’
Cov Parm Ratio Estimate Std Error 1 PR > |2]

INTEI.!CEPT 0.21992178  8.60965741 1.07782320 7.99. 0.0001
Residual  1.00000000 39.14872611 0.66065147 59.26 0.0001

Model Fitting Information for MATHACH

Description Value

Observations 7185.000

REML Log Likelihood ~-23558.4

Akaike's Information Criterion -23560.4

Schwarz's Bayesian Criterion ~23567.3

—2 REML Log Likelihood 47116.79

Solution for Fixed Effects

Parameter Estimate Std Error DDF T PR > |T|
INTERCEPT 12.63698083 0.24433777 159 51.72 0.0001

Interpreting the output of fitting an unconditional means model. First notice
that .the model converged quickly. PROC MIXED is a very efficient program
making it particularly nice for fitting of a wide range of models. (Of course, as
models become more complex, they can take a while to converge. Imbalance
can also increase the computational time.) )

'.I‘he next section presents the Covariance Parameter Estimates. These are
estimates for the random effects portion of the model. In this case, we find that
the estimated value of 7y, = 8.6096 and the estimated value of g2 = 39.1487.
(Differences between these estimates and those presented in Bryk & Rauden-
bush, 1992, are due to the computational improvements between the two pack-
ages. The differences between HLM 4.0 for Windows results and these results
are.much smaller). Hypothesis tests presented in this section indicate that both
variance components are significantly different from 0 (although these tests may
not be very reliable)'. These estimates suggest that schools do differ in their
average MATHACH scores and that there is even more variation among students
lethm schools. (The variance component within school is nearly five times the
size of the variance component between schools).

{\nother way of thinking about the sources of variation in MATHACH is to
estimate the intraclass correlation, p. This is equivalent to expressing the
variance-covariance matrix in (4) in correlation form, with 1's on the diagonal
and p on the appropriate off-diagonal elements. We estimate p, which tells us
what portion of the total variance occurs between schools, as:
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Too _ 86096
Too+d?  8.6096 +39.1487

p= .18

This tells us that there is a fair bit of clustering of MATHACH within school.
This suggests that an OLS analysis of these data would likely yield misleading
results.” )

The next section presents information that can be useful for comparing the
goodness of fit of multiple models with the same fixed effects but different
random effects.® The two criteria likely to be the most helpful are the AIC
- (Akaike’s Information Criterion) and the SBC (Schwarz’s Bayesian Criterion).
Models that fit better will have values of these statistics that are larger. (Note
that when these values are negative, as they are here, lower numbers in absolute
values are preferred.) Both penalize the log-likelihood for the number of param-
eters estimated, with the SBC taking a higher penalty for increased complexity.
Without a model against which we can compare these statistics they are not very
useful. As you fit models with different specifications for the random effects, as
I do later in this paper, changes in these statistics help assess differences in
goodness of fit (also see Littell et al., 1996).

The last section presents parameter estimates for the fixed effects. As there is
only one fixed effect, the intercept, the estimate of 12.64 tells us the average
school-level math achievement score in this sample of schools. (Note, this is not
the same as the average student level achievement score.)

Including Effects of School Level (level 2) Predictors

The unconditional means model provides a baseline against which we can
compare more complex models. We begin with the inclusion of one level-2
variable, MEANSES, which indicates the average SES of the children within the
school. Remember that MEANSES has a mean of 0 (it is centered about the
grand mean), which facilitates interpretation of the intercept term vyo,. Thus, our
- first conditional model, in which MATHACH is expressed as a function of
school-level SES can be written as:

Y, =By +r; and Bo;;' Yoo + Yor MEANSES; + uy;
where ry;~ N(0,0°) and uy; ~ N(0,790)

Substituting the level-2 equation into the level-1 equation yields:

Yij = [voo + You MEANSESJ-] + [qu + rij] )

To emphasize that this combined model is the sum of two parts—a fixed part
and a random part—I have separated the two components using brackets [ ].
The two terms in the first bracket represents the fixed part, consisting of the two
gamma terms. The two terms in the second bracket represent the random part,
consisting of the uy, (which represents variation in intercepts between schools)
and the r;; (which represents variation within schools). As before, we estimate
these random effects through their respective variance components, 7o, and o>,
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Notice that the only difference between the conditional model in (5) and the
unconditional model in (3) is the addition of an extra fixed effect for
MEANSES. Therefore, the MODEL statement, which identifies the fixed ef-
fects, must change to incorporate the predictor. The RANDOM statement, which
identifies the random effects remains the same.

We fit the model in (5) using the following code:

proc mixed noclprint covtest;

class school;

model mathach = meanses/solution ddfm=bw;
random intercept/sub=school;

Notice that nothing has changed except for the MODEL statement, which now
includes the additional fixed effect for MEANSES. Here, for simplicity, I restrict
attention to a single level-2 variable. Additional school level predictors can be
included as fixed effects by appending the variable names to the MODEL
statement. The other change is the option /DDFM=BW. This option asks SAS to
use the “between/within” method for computing the denominator degrees of
freedom for tests of fixed effects. Further details on this option are given in
Littell et al. (1996) and SAS Institute (1996, pp. 565-566).

Here is the output:

REML Estimation Iteration History

Iteration Evaluations Objective Criterion
0 1 33999.764766
1 2 33759.813934 0.00000000

Convergence criteria met.

Covariance Parameter Estimates (REML)
Cov Parm Ratio  Estimate std Error ZPr> |z}

INTERCEPT 0.06730855 2.63565706 0.40364376 6.53 0.0001
Residual 1.00000000 39.15783186 0.66081390 59.26 0.000%

Model Fitting Information for MATHACH

Description Value
Observations 7185.000
REML Log Likelihood -23480.6
Akaike's Information Criterion -23482.6
Schwarz's Bayesian Criterion -23489.5
—~2 REML Log Likelihood 46961.28

Solution for Fixed Effects

Parameter Estimate Std Error DDF T Pr > |T]
INTERCEPT 12.64945599 0.14921620 158 84.77 0.000%
MEANSES 5.86349698 . 0.36130302 158 16.23 0.0001
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Tests of Fixed Effects
Source NDF DDF Type III F Pr > F
MEANSES 1 158 263.37 0.0001

Interpreting the output with a single level-2 predictor. Because there are
now fixed effects (other than the INTERCEPT) to be estimated, the output
includes an additional section presenting relevant hypothesis tests for the fixed
effects. This Tests of Fixed Effects section can be helpful when you include a
CLASSification variable [a variable that you want represented as multiple
dummies} as a fixed effect and you would like a pooled test across all the levels
of that variable. If you would like to suppress this additional section (as we do in
subsequent iltustrative programs in this paper) simply add the option NOTEST
to the MODEL statement.

Fixed effects information. The term for the INTERCEPT, 12.65, estimates
~Yoo» the school mean math achievement when the remaining predictors (here,
just MEANSES) are 0. Because MEANSES is centered at the grand mean (with
a mean of 0), g is the estimated MATHACH in a school of “average
MEANSES.” The term for MEANSES, 5.86, provides our estimate of the other
fixed effect, vo,, and tells us about the relationship between math achievement
and MEANSES. Schools that differ by 1 point in MEANSES differ by 5.86
points in MATHACH. Its standard error of 0.36 yields an observed ¢-statistic of
16.22 (p < .0001), which indicates that we reject the null hypothesis that there is
no relationship between a school’s SES and the math achievement scores of its
students.

Covariance parameter estimates. Thesc tell us about the random cffects. We
now estimate T to be 2.65 and a2 to be 39.16. Although we have used the same
symbols in models (3) and (5) to represent these variance components, note that
they have very different meanings. In the previous model, there were no predic-
tors, so these were unconditional components. Having - 'd=d a predictor, these
are now conditional components. Notice that the cond1  .al component for the
variance within school (the residual component representing ¢?) has remained
virtually unchanged (going from 39.15 to 39.16). The variance component
representing variation between schools, however, has diminished markedly (go-
ing from 8.61 to 2.64). This tells us that the predictor MEANSES explains a
large portion of the school-to-school variation in mean math achievement.

One way of measuring how much of the variation in school means is ex-
plained by MEANSES is to compute how much the variance component for this
term (o) has diminished between the two models. As discussed by Bryk &
Raudenbush (1992, p. 65), we compute this as (8.61 — 2.65)/8.61, which yields
.69, or 69%. We interpret this by saying that 69% of the explainable variation in
school mean math achievement scores is explained by MEANSES. (Note that
this is not the same as a traditional R? statistic. This percentage only talks about
the fraction of explainable variation that is explained. If the amount of varia-
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t?on between schools is small, we might be explaining a large amount of very
little! For further discussion, see Snijders and Bosker, 1994.)

Having explained 69% of the explainable variation, you might also want to
know. whether there is still any variation in school means remaining to be
explained. The output provides two windows on this question. The, first is the
test .for the residual variance component for intercepts, which rejects the null that
Too i 0 with a z-statistic of 6.53 (p <.0001). Although this test is not very
rehab.le, it suggests that even after including MEANSES, there is additional
?xplamable variation present. The second window is to compute the residual
intraclass correlation, the intraclass correlation among schools “of comparable
SES.” Once again, we estimate the intraclass correlation as that fraction of the
sum of both variance’ components that occurs at the school level (i.c
2_.63/[2.63 + 39.16]), which is 0.06. We can view this residual intraclass correlz;:
tion as a partial correlation, which tells us about the similarity in math achieve-
3(;2 I\?Snéosr?g students within schools after controlling for the effect of

Including Effects of Student-Level (level-1) Predictors

) I illustrate the effect of including student level predictors by initially examin-
ing a model with only one student-level predictor (SES). To ease interpretation
and to focus on those features of the procedure unique to the inclusion of level-l’
predictors, I exclude level-2 predictors in this formulation. After reviewing the
steps necessary for including level-1 predictors, I fit a combined model.

'Begm by thinking about what the model to include a student level predictor
might look like. One simple model might be:

Y, = Bo; + By SES; + 1y,
Boy = Yoo *+ #oj»
Bij="Yiot+upp

~ 2 uol 0 T T .
where r; ~ N(0,0”) and (u,j-) ~N [(0) ’ ("'(1)2 "?:)]

This mo.del differs from the simple unconditional model in (3) in three important
ways. First, we-have included a single level-1 predictor, SES. Second, having
included this additional fixed effect, we have also included an additional random
§ffect. Thus, not only are we stipulating that a student’s math achievement score
is related to his or her SES, but also that the relationship between SES can vary
across schools. (If we did not want to allow this slope coefficient to vary across
schools, we could have “fixed” it by eliminating the term u,; from the equation
for the slope B, ;) Third, having allowed the intercepts and sljopes to vary across
schools, we now have a larger tau matrix to represent the random effects across
schools. Not only are there elements representing the variance components for
both the intercept and slope, there is also a covariance component, représenting
the correlation between intercepts and slopes (7,).

®
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Although this model can be fit easily in PROC MIXED, I have chosen not to
present the code for doing so because of an issue about interpretation arising
from the model parameterization. Consider the interpretation of the betas in
equation (6). Across the full sample, SES has a mean of 0. (It is grand-mean
centered.) Therefore, B, represents the average math achievement for a student
of average SES across the full sample. It does not represent the average math
achievement for students in school j (controlling for SES). As we add predictors
to our model, we would like to see how these conditional school means relate to
these other predictors. (Consider, for example, the interpretation of the effects of
MEANSES presented in the previous section.) To render the parameters more
interpretable, and to lead to a model in which we have both level-1 and level-2
predictors, we can rescale SES to be centered about its school mean, by comput-
ing CSES;; = SES;; — MEANSES;. Unlike some specialized software programs
(e.g., HLM) which ask whether you want to center variables, the data analyst
must be proactive when using PROC MIXED. Given the misconceptions and
misunderstandings surrounding the rationale behind centering and the effects of
the different forms of centering (Kreft, de Leeuw, & Aiken, 1995), some might
argue that this provision (or lack thereof) is an advantage of this program.

Let us therefore consider the following model representing the effect of a
level-1 predictor:

Y, = Bo;+ By, (SES; — SES) +r
Boj = Yoo + Uoj (7a)
Bij=Yio+ )

Ug; 0 Too T,
where r;~ N(0,0%) and (u?j) ~N [(0) ' ('r?g T )]

which can be rewritten as:

Yii =Yoo + Uoj + (Y10 + ;) (SES;; — SES)) + ry; _

= [Yoo + V1o(SES;; — SES)] + [ug;+.u,(SES;; — SES)) +r,)
with the assumptions as specified in (7a). This model -wo fixed effects (an
intercept and a slope for centered SES) and three random effects: for the
intercepts (registered by the u,;), for the slopes (registered by the u,), and for
the students within schools (registered by the r;).

We write the PROC MIXED code for fitting this model by specifying the
fixed effects on the MODEL statement and the random effects on the RANDOM
statement as:

(7b)

proc mixed noclprint covtest noitprint;

class school;

model mathach = cses/solution ddfm=bw notest;
random intercept cses/sub=school type=un;

The NOITPRINT option on the PROC statement tells SAS not to print the
iteration history (done here to save space). The MODEL statement includes the
fixed effect for CSES, the centered SES variable. (Remember that the intercept
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is included by default; the notest option suppresses the printing of additional
hypothesis tests for the fixed effects.) Notice that the RANDOM statement has
changed quite a bit from its simpler specification. Now there are two random
effects—one for the INTERCEPT and one for the CSES slope. (Remember that
the third random effect, for the r;;, which represents the variation within-school
across students, is included by default.) In addition, we have added an option -
specifying the structure of the variance-covariance matrix for the intercepts and .
slopes. The structure specified, UN, indicates an unstructured specification,
which allows all three parameters to be determined by the data. This specifica-
tion is common in school effects analyses. In many other multilevel analyses,
you may want to try alternative specifications. I discuss this further when
describing methods for fitting individual growth models. In addition to the
general PROC MIXED documentation, this topic is also addressed in Wolfinger
(1996) and Murray and Wolfinger (1994).
The output from this procedure is:

Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error ZPr > |2]

INTERCEPT UN(1,1) 0.23642291 8.67686615 1.07855368 8.04 0.0001
UN(2,1) 0.00138287 0.05075209 0.40619222 0.12 0.9006
UN(2,2) 0.01890945 0.69398853 0.28078887 2.47 0.0135

Residual 1.00000000 36.70061535 0.6257511358.65 0.0001
Model Fitting Information for MATHACH

Description Value

Observations 7185.000

REML Log Likelihood -23357.1

Akaike's Information Criterion ~23361.1

Schwarz's Bayesian Criterion -23374.9 .

-2 REML Log Likelihood 46714.24

Null Model LRT Chi-Square 1065.704

Nutl Model LRT DF 3.0000

Null Model LRT P-Value 0.0000

Solution for Fixed Effects

Parameter . Estimate Std Error DDF T Pr> |T|
INTERCEPT 12.64934611 0.24445234 159 51.75 0.0001
CSES 2.19319235°  0.12825918 7024 17.10 0.0001

Interpreting the output from models with level-1 predictors. Focus first on the
fixed effects. The estimate for vy, (12.65) indicates that the estimated average
school mean math achievement score, controlling for student SES, is 12.65. The
estimate for vy, (2.19) indicates that the estimated average slope representing
the relationship between student SES and math achievement is 2.19. The stan-
dard errors for both these parameter estimates are very small, resulting in large
r-statistics and low p-values. We conclude that, on average, there is a statistically
significant relationship between student SES and math achievement scores.
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The covariance parameter estimates tell us how much these intercepts and
slopes vary across schools. Although SAS presents these estimated variance-
covariance components in list form, we may rewrite the first three elements in

the list as:
(T‘oo T ) ( 8.68 0.05 )
T Ty 0.05 0.69.

So, 8.68 tells us about the variability in intercepts, 0.69 tells us about the
variability in slopes, and 0.05 tells us about the covariance between intercepts
and slopes. Estimated standard errors and tests of the null hypotheses that each
of these components is O are given in the remaining columns of the list. What do
we see? First, that the intercepts are very variable; in other words, schools do
differ in average math achievement levels even after controlling for the effects
of student SES. Second, that the slopes are also variable (variance component of
.69). We reject the null that this variance component = 0 with p = .0135. Third,
there is little correlation between intercepts and slopes (covariance component
0.05, p = .9006). In other words, there is no evidence that the effects of student
SES on math achievement differ depending upon the average math achievement
in the school.

How much of the within school variance in math achievement is explained by
student SES? Just as we compared the variance component for Ty, in the
unconditional and conditional models (presented in the previous two sections),
$0, t00, can we compare the estimates for o” for the unconditional and condi-
tional models. Returning to the output on page 7 we find an unconditional
estimate of 39.15. Here we have a conditional estimate of 36.70. Inclusion of
student level SES has therefore explained (39.15-36.70)/39.15 = 0.06, or 6% of
the explainable variation within schools. Comparatively speaking, then, school
SES explains much more of the variation in school level math achievment than
does student SES explain the within-school variation in student level achieve-
ment. When interpreting these results, however, the previously mentioned cau-
tions about the term “explained” variation in the context of multilevel models
remain, and even escalate. Interested readers should consult Snijders and Bosker

(1994) for a fuller discussion of this issue.

Including Both Level-1 and Level-2 Predictors

Having separately specified models with either just level-1 predictors or
" level-2 predictors, we can now consider models which contain variables of both
types. Although simplicity would have us fit a model with just the effects of
student SES and school SES, to achiéve parallelism with Bryk and Raudenbush
(1992), we also add in the effects of a second school level variable, SECTOR,
coded as O for public schools and 1 for Catholic schools.

Begin by thinking about how you would want to specify the model to be fit. ]
strongly advise you to write the model out, interpreting each of the parameters,
before writing code to fit the model. As models get more complex, it is not
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a!ways obvious how to parameterize the model so that the output can be used
directly to answer your research question. In the previous section, for example,
we saw the gains that come from centering student SES within school only after
writing out a model in which student SES was not centered. I find it helpful to
wrlte. separate models at the two levels and then combine them together to yield
the single level representation required for PROC MIXED.

Consider the following model:

Y= Boy+ By (SES, — SES) + 1,
Boj =Yoo + Yo MEANSES; + 5, SECTOR, + uy,
Biy= Y10+ Y MEANSES, + v,,SECTOR, + u, , _ (8a)

o~ 2 uy; 0\ (70 7
where r;~'N(0,0?) and (u,j) ~N [(0) , (T?g ,,‘l’;)]
Notice the similarities between this model (which includes both level-1 and
Ievel.-2 predictors) and the previous model (eq 7) that included only a level-1
predictor. The level-1 part of the model remains the same (because there is just
the one level-1 predictor), but each part of the level-2 part of the model now has
two additional fixed effects. The number of random effects remains the same.
"I'he number of random effects may be increased if an additional level-1 variable
is added to the model. )
We can combine the level-1 and level-2 equations together to yield:

Yy =Yoo + Yo1MEANSES; + Y2 SECTOR, + ,o(SES,, SE_SJ)
+¥1MEANSES(SES,, ~ SES) +v,,SECTOR(SES, — SES) ~ (8b)
+uo;+ u, (SES;; ~ SES) +r;

Having written out a combined equation, we can now write the requisite PROC
MIXEQ code. Each fixed effect on the first two lines of the equation in 8b must
appear in the MODEL statement (because this is where fixed effects are indi-
cated) and each random effect (on the last line of equation 8b) must appear in
the RANDOM statement. By default, SAS includes an intercept as a fixed effect
on the MODEL statement and a within-group random effect (for the r,) on the
RANDOM statement. Interaction terms may be easily specified in the {VIODEL
statement by using an asterisk (*) between the relevant variables. The code:
proc mixed noclprint covtest noitprint;
class school;
model mathach = meanses sector cses meanses*cses
sector*cses/solution ddfm=bw notest;

random intercept cses/type=un sub=school; ’

yields the output:
Covariance Parameter Estimates (REML)

Cov Parm Ratio Estimate Std Error IPr > |1}

INTERCEPT UN(1,1) 0.06485969 2.38172336 0.37171728 6.41 0.0001
UNC2,1) 0.00524422 0.19257382 0.20451479 0.94 D.3464

) UN(2,2) 0.00276060 0.10137258 0.21381009 0.47 0.6354
Residual 1.00000000 36.72116429 0.6261333158.65 0.0001
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Model Fitting Information for MATHACH

Description Value

Observations 7185.000

REML Log Likelihood -23251.8

Akaike's Information Criterion -23255.8

Schwarz's Bayesian Criterion -23269.6

—2 REML Log Likelihood - 46503.67

Null Model LRT Chi-Square 220.5683

Null Model LRT DF 3.0000

Null Model LRT P-Value 0.0000

Solution for Fixed Effects

Parameter Estimate Std Error bDDF T PR > |T]
INTERCEPT 12.11358496 0.19880323 157 60.93 0.0001
CSES 2.93876223 0.15509265 7022 18.95 0.0001
MEANSES 5.33911631 0.36929107 157  14.46 0.0001
SECTOR 1.21667252 0.30637896 157 3.97 0.0001
CSES*MEANSES 1.03887054 0.29890063 7022 3.48 0.0005
CSES*SECTOR -1.64258263 0.23979107 7022 -6.85 0.0001

Interpreting the output of fitting models with both level-1 and level-2 predic-
tors. Begin with the fixed effects. All are significantly different from 0
{p <.001). As SECTOR is a dummy variable indicating whether the school is a
public school or a Catholic school, it can be helpful to rewrite a pair of fitted
models, one for each sector, by substituting in the values of 0 and 1 for
SECTOR:

Publicc: MATHACH = 12.11 + 5.34 MEANSES + 2.94 CSES
+ 1.03 MEANSES*CSES
Catholicc MATHACH = 13.33 + 5.34 MEANSES + 1.30 CSES
+1.03 MEANSES*CSES

The main effect of SECTOR tells us that the intercepts in these two models are
significantly different. The interaction between CSES and MEANSES tells us
that the slopes for CSES differ depending upon the MEANSES of the school;
the interaction between CSES and SECTOR tells us that the slopes for CSES are
significantly different in the two sectors. (I should note that I tested to see
whether there was a two-way interaction between MEANSES and SECTOR and
a three way interaction between MEANSES, CSES, and SECTOR and found
none.)

We could use these equations to graph the results of the multilevel model (as
done with these data by Bryk & Raudenbush, 1992, p. 73). Because the variable
MEANSES has a grand mean of 0, and CSES is centered at its school mean, the
six parameter estimates have easy and direct interpretations. The average public
school math achievement score is 12.11; the average Catholic school score is
13.33. At average values of student and school SES, these means are signifi-
ca