FINAL SOLUTION 2009

The association between maternal smoking and respiratory health of children Outcome variable: wheezing (binary: 0, 1) C: City (1 = Kingston, 0 = Portage) Repeated measurements "t": Once a year (age (t) = 9, 10, 11, 12) Mother's smoking status (categorical: 0, 1, 2, with dummy variables X₁ and X₂) Scientific question: to assess and compare the effects of smoking patterns on wheezing patterns

** Read in Dataset (Wide)
infile id str10 city age9 smk9 whz9 age10 smk10 whz10 age11 smk11 whz11 age12
smk12 whz12
using wheeze2.raw, clear
** Convert to long format
reshape long smk whz , i(id) j(age)
drop age9-age12
** Generate the moderate and heavy smoker indicator
gen smk1 = 1 if smk == 1
replace smk1 = 0 if smk1 == .
gen smk2 = 1 if smk == 2
replace smk2 = 0 if smk2 ==.

(a) Write down a model for $E(y_{ij})$ in terms of an appropriate link function that is linear in an intercept and include additive terms for city, for smoking (moderate and heavy), and time. Also, write down $var(y_{ij})$ given the nature of the response. Interpret the coefficients in your model.

Let y_{ij} be the response at time $t_{ij} = 9, 10, 11, \text{ and } 12$ for the ith child.

Link function:

$$g(E(y_{ij})) = \log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right)$$

Systematic part:

$$\log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right) = \beta_0 + \beta_1 c_i + \beta_2 x_{1ij} + \beta_3 x_{2ij} + \beta_4 t_{ij}$$

Random part:

The binary responses are correlated, and the diagonal element of covariance matrix are: $var(y_{ij}) = E(y_{ij})[1 - E(y_{ij})]$

Model coefficient interpretation:

On the Population-level:

 β_0 : log odds of wheezing for children from Portage with non-smoker mothers at birth.

 β_1 : log odds ratio of wheezing comparing children from Kingston to children from Portage with the same mother smoking status and age.

 β_2 : log odds ratio of wheezing comparing same-age children whose mothers are moderate smokers to children whose mothers are non-smokers from the same city.

 β_3 : log odds ratio of wheezing comparing same-age children whose mothers are heavy smokers to children whose mothers are non-smokers from the same city.

 β_4 : log odds ratio of wheezing due to one year increase in age of children from the same city and same mother's smoking status.

(b) Under your model in (a)

The log odds of wheezing for a child from Kingston whose mother is a heavy smoker at t_{ij} is $\beta_0 + \beta_1 + \beta_3 + \beta_4 t_{ij}$.

xi: xtgee whz age	smk1 smk2	i.city, nold	og f(bin)	l(logit)	corr(in	d)	
i.city	_Icity_1-2	(_	_Icity_1	for city=	=kingsto	n or	mitted)
GEE population-ave Group variable: Link: Family: Correlation: Scale parameter:	eraged mode	l binomi independe	id git Lal ent 1	Number of Number of Obs per of Wald chi2 Prob > ch	cobs groups group: mi av ma 2(4) hi2	= n = g = x = =	128 32 4 4.0 4.10 0.3930
Pearson chi2(128): Dispersion (Pearson):		126.26 .986411		Deviance Dispersic	n	=	147.94 1.155751
whz	Coef.	Std. Err.	Z	P> z	[95% Co	nf.	Interval]
age - smk1 - smk2 _Icity_2 - _cons	.1993475 .1276565 .7347176 .2117842 1.15685	.1803634 .4582412 .5406551 .4010502 1.899495	-1.11 -0.28 1.36 -0.53 0.61	0.269 0.781 0.174 0.597 0.543	552853 -1.02579 324946 997828 -2.56609	3 3 9 1 3	.1541583 .7704798 1.794382 .5742597 4.879792

(c) The investigators were unaware that measurements on the same child might be correlated. They fit the model in (a) without taking correlation into account, treating all the observations from all children as if they were unrelated.

We fit a longitudinal logistic regression model assuming 'independent' correlation structure. When adjusted by age and city, mother's smoking status is 'not' significantly associated with wheezing. P-values for both smk1 (the mother is moderate smoker) and smk2 (the mother is heavy smoker) are larger than alpha-level 0.05 (0.781 and 0.174, respectively). Testing smk1 and smk2 simultaneously, the p-value was 0.235, showing that those two variables together overall was not statistically significant either.

$H_0:\beta_2 = 0$	-> p = 0.781 > 0.05; therefore, failed to reject the null
$H_0:\beta_3 = 0$	-> p = 0.174 > 0.05; therefore, failed to reject the null
$H_0:\beta_2 = \beta_3 = 0$	\rightarrow p = 0.2325 > 0.05; therefore, failed to reject the null

(d) Why might the analysis in (c) be unreliable?

Failure to take into account within-subject correlation leads to incorrect estimation of the standard error for the estimated coefficients. Thus, hypothesis tests about those coefficients based on their standard error give incorrect results, from which we may draw incorrect conclusion.

(e) Logistic regression in longitudinal data with taking into account correlation among repeated measurements on the same subject

 $g(E(y_{ij})) = \log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right)$ Link function: $\log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right) = \beta_0 + \beta_1 c_i + \beta_2 x_{1ij} + \beta_3 x_{2ij} + \beta_4 t_{ij},$ Systematic part:

Where y_{ij} is the response, and t_{ij} is 9, 10, 11, and 12

Random part: the responses are correlated Bernoulli, and need specify the correlation matrix.

$$\operatorname{var}[y_{ij}] = \mu_{ij}(1 - \mu_{ij})$$
$$T_i^{1/2} = \sqrt{Var(Y_i)}$$
$$\Gamma_i = \operatorname{corr.matrix.for.subjec.subje$$

(f) Fit your model in (e) to the data and conduct a test of the null hypothesis in part (c). State your conclusion as a meaningful sentence. Do the results agree with those in part (c)? Give a possible explanation for this, citing results from your output to support your explanation.

. xi: xtgee whz age smk1 smk2 i.city, nolog f(bin) l(logit) corr(unst) _Icity_1-2 (_Icity_1 for city==kingston omitted) i.city

GEE population- Group and time Link: Family: Correlation: Scale parameter	el id lc binom unstructu	age ogit nial nred 1	Number of obs = Number of groups = Obs per group: min = avg = max = Wald chi2(4) = Prob > chi2 =			128 32 4 4.0 4 0.3223	
whz	Coef.	Std. Err.	Z	P> z	[95% Con:	 f.	Interval]
age smk1 smk2 _Icity_2 _cons	2144158 0223768 .8193055 2001139 1.284055	.1746147 .4500519 .5183241 .4154962 1.824173	-1.23 -0.05 1.58 -0.48 0.70	0.219 0.960 0.114 0.630 0.481	5566543 9044624 1965911 -1.014471 -2.291259		.1278228 .8597087 1.835202 .6142437 4.85937

. test smk1 smk2

(1) smk1 = 0 (2) smk2 = 0

chi2(2)	=	3.33
Prob > chi2	=	0.1890

From the STATA output

$H_0:\beta_2 = 0$	-> p = 0.960 > 0.05; therefore, failed to reject the null
$H_0:\beta_3 = 0$	-> p = 0.114 > 0.05; therefore, failed to reject the null
$H_0:\beta_2 = \beta_3 = 0$	-> p = 0.1890 > 0.05; therefore, failed to reject the null

Therefore, when adjusted by age and city, mother's smoking status is 'not' significantly associated with wheezing at 0.05 alpha-level. This result agrees with those in part (c). This is because the within-subject correlation is relatively small so that independent assumption for the correlation structure will not affect the model inference very much.

(g) Do you think a simpler model for correlation may be plausible? Select and explain a correlation model you feel is most plausible, and fit this model to the data.

Based on the correlation structure estimated from (f) with an unstructured correlation, either of the exponential or the exchangeable model is suitable for this dataset. However, the correlation between age 10 and 11 (0.27) may not be treated as independent. To be conservative, the unstructured correlation with robust variance is used for the following analyses.

```
. xtcorr
Estimated within-id correlation matrix R:
        c1
              с2
                     с3
                                  c4
   1.0000
r1
r2 -0.0932 1.0000
    0.0543 0.2669 1.0000
0.0231 -0.0708 0.0768
r3
r4
                              1.0000
. xi:xtgee whz i.city smk1 smk2 age, nolog f(bin) link(logit) corr(uns) robust
                         Semi-robust
                                                    [95% Conf. Interval]
                          Std. Err.
        whz |
                   Coef.
                                              P > |z|
              .2001139
                         .411357
                                    0.49
       city |
                                              0.627 -.606131 1.006359
               -.0223768
                                      -0.05
                                                       -.9355115
                                                                    .8907578
       smk1 |
                           .4658936
                                              0.962
                          .4853743
                                      1.69
                                                      -.1320106
                                                                   1.770622
       smk2 |
                .8193055
                                              0.091
               -.2144158
                          .1804719
                                      -1.19
                                              0.235
                                                       -.5681342
                                                                   .1393027
        age |
       cons |
               1.083942
                           1.929807
                                       0.56
                                              0.574
                                                       -2.698411
                                                                   4.866294
 test smk1 smk2
            (1) \, \text{smk1} = 0.0
             (2) \, \text{smk2} = 0.0
                                       chi2(2) = 3.60
                                          Prob > chi2 =
                                                             0.1651
 test city
             (1) city = 0.0
                                          chi2(1) = 0.24
                                          Prob > chi2 =
                                                           0.6266
```

The analysis shows that there is no statistically significant evidence that wheezing is associated with mother's smoking status (p-value .17) at alpha-level 0.05, after adjusting for other confounders. City is also not a statistically significant risk factor of wheezing (p-value .63), after adjusting for other confounder.

(h) From your fit in (g), estimate the probability that child from Kingston whose mother is heavy smoker wheeze at the initial visit. And, estimate of the probability that child from Kingston whose mother does not smoke wheeze at the initial visit. What can you conclude?

The model fit in (g) looks as follows:

$$\log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right) = 1.08 + 0.20c_i - 0.02x_{1ij} + 0.82x_{2ij} - 0.21t_{ij}$$

For the first child:

 \rightarrow The probability is 0.49 (95% CI: 0.31 – 0.68)

For the second child:

/

```
. lincom cons+ Icity 2+9*age
```

```
( 1) __Icity_2 + 9 age + __cons = 0
```

whz	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
 (1)	8458002	.4879743	-1.73	0.083	-1.802212	.1106118

→ The probability is 0.30 (95% CI: 0.14 – 0.52)

The probability of wheezing for a child with heavy smoker mother is higher than that of a child with non-smoking mother, when other variables are held equal. However, this is not statistically significant, since the p-value for heavy-smoking status greater than alpha-level 0.05. Also the two confidence intervals overlap. Therefore, we cannot draw statistically significant conclusion.

(i.1) One could imagine that wheezing at a particular time might be dependent on past and present maternal smoking behavior. Write down model and fit it, and report finding.

An example model with past maternal smoking behavior (with both previous moderate and heavy smoking status):

$$\log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right) = \beta_0 + \beta_1 c_i + \beta_2 x_{1ij} + \beta_2' x_{1ij-1} + \beta_3 x_{2ij} + \beta_3' x_{2ij-1} + \beta_4 t_{ij}$$

Based on the STATA output below, the model can be specified as follows:

$$\log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right) = -0.38 + 0.57c_i + 0.038x_{1ij} - 0.22x_{1ij-1} + 1.27x_{2ij} + 0.0052x_{2ij-1} - 0.107 t_{ij}$$

•	xi:xtgee	whz	i.smkl	i.smk1	_lag1	i.smk2	i.smk2	_lag1	age	city,	nolog	f(bin)	l(logit)
С	orr(unst)	robu	ust										

GEE population Group and time Link: Family: Correlation:	el id a log binomi unstructur	l id age logit binomial unstructured		obs = groups = roup: min = avg = max =	= 96 = 32 = 3.0 = 3.0	
Scale parameter:			1	Prob > ch	(6) = i2 =	= 8.05 = 0.2348
		(standard	l errors	adjusted	for cluste:	ring on id)
whz	Coef.	Semi-robust Std. Err.	Z	P> z	[95% Conf	. Interval]
Ismk1_1 _Ismk1_lag~1 _Ismk2_1 _Ismk2_lag~1 _age _city _cons	.0377312 2158187 1.273384 .0052262 1071572 .5702549 3758572	.5635067 .555965 .6339722 .9997849 .3212241 .524679 3.685178	0.07 -0.39 2.01 0.01 -0.33 1.09 -0.10	0.947 0.698 0.045 0.996 0.739 0.277 0.919	-1.066722 -1.30549 .0308217 -1.954316 7367449 458097 -7.598673	1.142184 .8738527 2.515947 1.964769 .5224306 1.598607 6.846958

(i.2) One could imagine that wheezing at a particular time might be dependent on previous wheezing. Perhaps children who have already exhibited such behavior are more prone to show it again. Write down model and fit it, and report finding.

The model with previous wheezing:

$$\log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right) = \beta_0 + \beta_1 c_i + \beta_2 x_{1ij} + \beta_3 x_{2ij} + \beta_4 t_{ij} + \beta_4 y_{ij-1}$$

Based on the STATA output, the model can be specified as follows (log odds)

$$\log\left(\frac{E(y_{ij})}{1 - E(y_{ij})}\right) = 0.73 + 0.55c_i + 0.10x_{1ij} + 1.21x_{2ij} - 0.19t_{ij} - 0.80y_{ij-1}$$

. xi:xtgee whz i.city i.smk1 i.smk2 age i.whz_lag1, nolog f(bin) l(logit)
corr(unst) robust

GEE populatio Group and tim Link: Family: Correlation:	n-averaged mo e vars:	del id lo binor unstructu	age ogit nial ıred	Number Number Obs per	96 32 3.0 3	
Scale paramet	er:		1	Prob >	chi2 =	0.2129
whz	 Coef.	Semi-robust Std. Err.	Z	P> z	[95% Conf.	Interval]
_Icity_1 _Ismk1_1 _Ismk2_1 _age _Iwhz_lag1_1 _cons	.5517445 .103979 1.2126 1926388 8014573 .7271864	.5532821 .5853943 .5990186 .3275985 .6043182 3.736305	1.00 0.18 2.02 -0.59 -1.33 0.19	0.319 0.859 0.043 0.557 0.185 0.846	5326685 -1.043373 .0385451 83472 -1.985899 -6.595837	1.636157 1.251331 2.386655 .4494424 .3829845 8.05021

From the STATA output, we conclude that, at an alpha-level of 0.05 and controlling for other covariates, on the population level:

- 1) past maternal smoking is not significantly associated with child wheezing.
- 2) past wheezing is not significantly associated with present child wheezing.
- 3) however, after controlling for previous maternal smoking status or previous wheezing status, current maternal heavy smoking is associated with increased odds of wheezing.

(*j*) Write down a logistic regression model with random intercept and additive terms for city, for smoking and time.

$$logitP(y_{ij} = 1 | U_i) = (\beta_0 + U_i) + \beta_1 c_i + \beta_2 x_{1ij} + \beta_3 x_{2ij} + \beta_4 t_{ij}$$
$$U_i \sim N(0, v^2)$$

 β_0 : average baseline log odds of wheezing at age 0 for a typical (Ui = 0) child from Protage with a non-smoker mother.

 β_1 : subject-specific change in log odds of wheezing of a child being from Kingston to Protage, adjusted for the other variables.

 β_2 : subject-specific log odds ratio of wheezing comparing moderate to non-smoker mother, adjusted for other variables.

 β_3 : subject-specific log odds ratio of wheezing comparing heavy to non-smoker mother, adjusted for other variables.

 β_4 : subject-specific change in log odds ratio of wheezing due to one year increase in age, adjusted for other variables.

 U_i : random deviation of baseline odds from β_0 for individual i

 v^2 : variance of the random deviations U_i .

(j.1) The probability of the child with random intercept Ui = 0, from Portage whose mother is heavy smoker at t_{ij} ?

$$\exp(\beta_0 + \beta_3 + \beta_4 t_{ij})/(1 + \exp(\beta_0 + \beta_3 + \beta_4 t_{ij}))$$

(j.2) What describes the probability of wheezing for a child with random intercept $U_i = 2$ from Portage whose mother is moderate smoker at t_{ij} ?

$$\exp(\beta_{0} + 2 + \beta_{2} + \beta_{4}t_{ij}) / (1 + \exp(\beta_{0} + 2 + \beta_{2} + \beta_{4}t_{ij}))$$

(j.3) What describes the odds ratio of wheezing comparing a child from Kingston whose mother is heavy smoker to if the child is from Protage with a mother who doesn't smoke at t_{ij} ? (*Give answers in terms of model parameters*)

$$\exp(\beta_1 + \beta_3) = \exp(\beta_1)\exp(\beta_3)$$

(k) Fit the logistic regression model with random intercept and compare the estimated coefficients and their standard errors with those obtained from model (g). Are the two models equivalent? Also estimate (j.1) and compare these estimates with the population average estimates obtained from model (g). Report and interpret the estimated degree of heterogeneity across children in the log-odds of wheezing not attributable to the covariates.

xi:xtlogit whz	age i.smkl i	.smk2 i.city	y, nolog	i(id) re		
Random-effects Group variable	logit (i) : id			Number Number	of obs = of groups =	128 32
Random effects Log likelihood	u_i ~ Gaussi = -73.92733	lan 32		Obs per Wald ch Prob >	group: min = i2(4) = chi2 =	4 3.99 0.4076
whz	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age _Ismk1_1 _Ismk2_1 _Icity_1 _cons	2041793 1215249 .7577636 .2168998 .9613227	.183191 .4714092 .5637224 .4234064 1.92156	-1.11 -0.26 1.34 0.51 0.50	0.265 0.797 0.179 0.608 0.617	563227 -1.04547 347112 6129616 -2.804865	.1548685 .8024202 1.862639 1.046761 4.727511
/lnsig2u	-2.168139	3.734647			-9.487913	5.151635
sigma_u rho	.3382163 .0336021	.6315593 .0368633			.0087041 .000023	13.14206 .9813079
Likelihood rat	io test of rh	no=0: chibar2	2(01) =	0.08	Prob >= chiba	r2 = 0.388

From the random-intercept model, the estimated log odds of wheezing for a child with random intercept deviation 0, from Portage whose mother is heavy smoker at time t_{ij} is 1.72-.204* t_{ij} (estimated probability is $exp(1.72-.204*t_{ij})/(1+exp(1.72-.204*t_{ij}))$). Assuming the child is at age 9,

→ Probability is 0.52 (95% CI: 0.26 - 0.77)

The same probability from the GEE model,

. xi:xtgee whz i.city smk1 smk2 age, nolog f(bin) link(logit) corr(uns) robust . lincom _cons + 9*age + smk2 (1) smk2 + 9 age + _cons = 0 whz | Coef. Std. Err. z P>|z| [95% Conf. Interval] (1) | .1736191 .3593006 0.48 0.629 -.5305971 .8778353

→ Probability is 0.54 (95% CI: 0.37 - 0.70)

Numerical differences in point estimates reflect the difference between a population-averaged effect and its individual-level counterpart for models where the link function is not linear. Also as expected, the standard errors estimated from the random effect model are larger than those from the GEE model and the point estimates from the GEE model are small in absolute magnitude than those from the random effect model. The GEE and the random effect model are **not** equivalent.

Rho=0.034 describes the estimated degree of heterogeneity across children in the propensity of wheezing, not due to covariates. This number is relatively small (<5%), which means it may not be necessary to include random effects in the model. Although including random effects will enhance model predictability.

$$rho \approx \frac{\sigma_u^2}{\sigma_u^2 + \sigma_{\varepsilon}^2} = \frac{.34^2}{.34^2 + \pi^2/3} = 0.033$$