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Lorelogram: A Regression Approach to Exploring
Dependence in Longitudinal Categorical Responses

Patrick J. HEAGERTY and Scott L. ZEGER

We propose flexible regression estimators of the marginal pairwise log-odds ratio measure of association for longitudinal cate-
gorical responses. The function that we estimate is the log-odds ratio analog of the correlogram; hence we name the function
the lorelogram. Measuring the association of categorical responses on the log-odds scale allows ease of interpretation and allows
pairwise association to remain unconstrained by the marginal means, a feature not shared by correlations with binary or multi-
nomial responses. Estimation of the function is achieved through the use of standard parametric estimating equations or through
an extension of generalized additive models that allows nonparametric estimation of dependence functions for fixed smoothing
parameters. We apply the methodology to binary longitudinal data where scientific interest focuses on the dependence structure.

KEY WORDS: Correlogram; Estimating equation; Variogram.

1. INTRODUCTION

In the analysis of longitudinal data, the dependence struc-
ture can be of direct scientific interest, useful for the effi-
cient estimation of mean parameters, or simply a nuisance.
This article is concerned with the description of the de-
pendence structure when it is either of direct interest or
of interest as an exploratory prelude to further regression
modeling.

Section 2 describes the variogram as used with continu-
ous longitudinal responses. For categorical longitudinal re-
sponses, we propose an alternative measure of dependence
based on the marginal pairwise log-odds ratio that Hea-
gerty (1995) termed the “lorelogram.” The advantages of
this measure include familiarity with the scale of the mea-
sure and the lack of mean constraints. In Section 3 we
develop three estimation strategies for obtaining a fitted
lorelogram: a parametric approach based on estimating
equations (Liang and Zeger 1986), a related regularization
estimator (O’Sullivan 1986), and a nonparametric estima-
tor that naturally extends the generalized additive models
of Hastie and Tibsirani (1990) to the estimation of depen-
dence functions.

We apply the methodology to six longitudinal binary re-
sponses collected monthly for 90 schizophrenia patients.
The estimated lorelograms display the components of co-
variance due to serial dependence and patient heterogeneity
and clearly distinguish two classes of symptoms.

Finally, we suggest other uses for the estimated lorelo-
gram, including assessment of hierarchical model assump-
tions by using covariates other than time and use for gen-
eral dependent data structures, including spatially corre-
lated categorical responses.

2. LORELOGRAM: PROPERTIES

For categorical data, we propose an alternative to the
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variogram or correlogram (Cressie 1993; Diggle 1990) that
measures dependence in terms of the marginal pairwise log-
odds ratio. First, we briefly review the properties of the
variogram and correlogram; then, we describe the proposed
function, the lorelogram. We specifically consider isotropic
models in which the dependence between observations is
assumed to depend only on the distance between them. We
avoid the stronger assumption of stationarity (Cinlar 1975),
because we wish to address situations in which the mean
may depend on covariates including time.

2.1

The variogram (Cressie 1993; Diggle 1990) is a func-
tional description of the isotropic dependence structure in
time series, spatial observations, or longitudinal responses.
Without loss of generality, we review the variogram and
its estimation specifically for continuous longitudinal re-
sponses. Consider measurements Y;;,j = 1,...,7n; on sub-
jects ¢ =1,..., N, taken at times ¢;;. Define the residuals,
R;; =Y;; — E[Y;;]. For j # k, the variogram is defined as

Variogram and Correlogram

Y[ty — tikl) = %E[(Rz’j = Ri)?]

An alternative function that is used is the covariogram,
C(|tij — tix|) = cov(Rij, Rik).

Finally, the correlogram is a rescaled version of the covario-
gram, r(At) = C(At)/V, where V = var(R;;) > C(0).
Each of these functions captures the isotropic dependence
equivalently if the marginal variance exists. The major dif-
ferences lie in the interpretation of the function and the
statistical properties of their estimators.

For longitudinal data, the correlogram features 1 — r(0),
the difference r(0) — r(+00), and r(+o00) have useful inter-
pretations in terms of proportions of variability due to mea-
surement error, serial dependence, and subject heterogene-
ity (Diggle 1988). In a similar fashion we can use the vario-
gram features v(0),v(+o0), and V to characterize the vari-
ance components under Diggle’s model (see Diggle, Liang,
and Zeger 1994 for examples and discussion).
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For continuous responses, the variogram is estimated
nonparametrically by the empirical variogram, which is de-
fined as a smoothing of the squared residual differences,
+(Rij — Rix)?, plotted against the time separation, [t;; — ;x|
(Diggle et al. 1994). Conversion to the correlogram is
achieved by #(u) =1 — {[§(w)]/V}.

The empirical variogram or correlogram provides a
graphical summary of the isotropic dependence structure.
This summary may then be used to assess the relative con-
tributions of serial dependence and subject heterogeneity
and to guide selection of appropriate parametric covariance
models for continuous longitudinal responses.

2.2 Lorelogram

For binary or multinomial data, the marginal variance is
a function of the mean, and hence the variogram or covario-
gram are not appropriate summaries of the dependence. The
correlogram may be used, but for binary responses it is
known that the correlation is constrained by the means due
to the Frechet inequality, P[Y; = Yo = 1] < min(P[Y; =
1], P[Y> = 1]) (Lipsitz, Laird, and Harrington 1991). For
example, let 11 = E[Y;1], u2 = E[Y;2] and assume p; < po.
Then

EYi1Yi) < 1
and
pa (1 — Mz)r/z
(1= p1)pe

The bound is recognized as the square root of the odds ra-
tio. For equal means, there is no constraint; however, if the

corr(Y;y, Vi) < [
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Figure 1.

Correlogram and Lorelogram for Binary Data Assuming a Latent Autocorrelated Gaussian Process. (a) COR: 3 =

151

two means differ, then the allowable range for the correla-
tion can be severely constrained. For (11, p2) = (.1,.3), the
upper bound on the correlation is .51. Thus even “moder-
ately” different means can greatly restrict the range for the
correlation.

To illustrate the potential impact of mean constraints, we
considered a generalized linear mixed model,

g(P[Y:; = 1|b;]) = X8 + by

b; ~ N(0,D;),

where the (j,k) element of the covariance matrix D; is
given by

Dy(j, k) = 77 + 0% plts el

We further assume that the Y;; are conditionally indepen-
dent given the vector b;. Thus under this model, depen-
dence among the observed binary data is induced by a la-
tent autocorrelated Gaussian process. Figure 1 shows the
induced pairwise correlation for a vector of 12 equally
spaced binary observations where the mean function is lin-
ear in time, X;;3 = S + Piti;;9 = ®~ the probit link
function; and the dependence parameters are fixed at 72 =
1.5,02 = 2.5, and p = .5. Using this model yields a marginal
prevalence function P[Y;; = 1] = E[®(X;;8 + b;)] =
@{[1/(\/ 1+ 72+ 02)]Xij,6) = @[(1/\/5))(13,3] In Figure
la, BT = /5 x (.5,0), yielding stationarity and an au-
tocorrelation function that directly reflects the latent pro-
cess. (See Keenan 1982 for a discussion of stationary binary
processes induced in this fashion.) But in Figure 1, where
BT = /5 x (.5, —.2), the process is no longer stationary,
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(b) COR: 8 = \/( 5)*c(.5, —.2); (c) LOR: g = \/( 5)*c(.5, 0); (d) LOR: 3 = \/(5)*0(.5, —.2). The model assumes that the binary responses are
conditionally independent given the latent process with the mean a function of time, given by ®~"(P[Yy = 1/b;]) = Bo + B1 X tj + bj. The first row
shows data with a constant mean function; the second row shows data with a linearly declining conditional mean function. The latent Gaussian
process is mean 0 with covariance given by cov(bj, bix) = 1.5 + 2.5 X Slti~til, o exact value of the pairwise correlation (log-odds ratio) of Y
and Yj versus |j — k|; the lines give the average correlation (log-odds ratio).
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and the average correlation continues to decline over the
time range. Thus naive inspection of the marginal correla-
tions may lead to the erroneous conclusion that the latent
dependence structure is purely serial.

In contrast to correlations, the marginal pairwise odds ra-
tio is unconstrained by the marginal prevalence. The pair-
wise odds ratio is given by

_ P[Y;1 =1,Y;2 =1]P[Y;1 = 0,Y;5 = (]
VYY) = By =T Y, = 0PV = 0,V = 1]

In the exponential family representation of a pair of binary
responses, the likelihood can be written as L(Y7,Y2;0) =
exp(fp + 01Y1 + 02Y5 + 012Y1Y2). In this representation the
unconstrained canonical parameter 65 is the pairwise log-
odds ratio.

Following Lipsitz et al. (1991), we propose using the
marginal pairwise log-odds ratio to describe the serial de-
pendence for binary responses. Define the lorelogram as

LOR(tij, tik) = ].Og \I’Ofi]‘, Kk)
As a special case, we define the isotropic lorelogram as
LOR(H;,;J' — tzkl) = log \I/(Y;'j, sz)

The odds ratio is strictly positive and unbounded, so tak-
ing its logarithm yields the entire real line as the range
of allowable values. Furthermore, for binary responses the
log-odds ratio is the scale on which regression parameters
are measured, assuming a logistic link function. Therefore,
using a log-odds ratio dependence function permits mean-
ingful and familiar interpretation of the scale.

Returning to the earlier example of a binary series in-
duced via a latent autocorrelated Gaussian process, we find
that the lorelogram retains the basic features of the la-
tent process’s autocorrelation function. Figure 1c¢ shows the
lorelogram for the stationary binary series used to construct
the plot in 1a. Figure 1d plots the average log-odds ratio for
the binary longitudinal series used to construct 1b, where
the conditional mean function declines linearly on the pro-
bit scale. In this case the average correlation is constrained
by the changing means. However, the pairwise log-odds ra-
tio is unconstrained, and the average log-odds ratio clearly
reflects both the serial correlation and the long-range, or
subject-specific, dependence.

Odds ratios also naturally describe dependence for ordi-
nal or nominal responses. For ordinal responses, we repre-
sent a datum in terms of cumulative indicators. Define O;; €
[1,2,...,C] as the ordinal response and consider Y;; =
VeC(Y;'jc), where Y;;jc = l(Ow > C) [AS [1,2,. ..,C — 1]
Note that E[Y;;.] is used in the cumulative link regression
models such as the discrete proportional hazards model and
the proportional odds model (McCullagh and Nelder 1989).
The global odds ratio can be used to describe the depen-
dence between two ordinal responses (Dale 1986). For a
given pair of ordinal responses there are (C — 1)2 global
odds ratios defined as

\I,i(j,k)(cl,62) = \II(Y;jC1 ) YvikCz) for c1 € [17 R C - 1]

and cp€[l,...,C—1].
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One may adopt simpler models that assume that for a given
pair there exists a single common global odds ratio yield-
ing a single association parameter for a pair of ordinal re-
sponses:

Wi, k)(er,ea) = Yigj,k) independent of cutpoints.

These global odds ratios do not require any assumptions re-
garding the distance between categories nor any assignment
of scores. Thus the global odds ratio is able to reflect cate-
gory ordering and hence collapsibility of ordinal measures
without imposing an arbitrary distance or score.

Odds ratios can be used similarly to measure dependence
for nominal responses. But reasonable assumptions to re-
duce the number of parameters are generally unavailable.
This is analogous to the parameter dimension issue for poly- -
tomous logistic regression for independent responses (Mc-
Cullagh and Nelder 1989).

Finally, we note that the lorelogram as a function, though
unconstrained for any given pair of times, is not globally
unconstrained. The dependence function combined with the
mean must correspond to a valid covariance structure. This
condition is similarly required of a valid correlation func-
tion (Cressie 1993) and is difficult to ensure for flexible
empirical estimators.

To summarize, we propose modeling the marginal pair-
wise log-odds ratio as a function of the observation times
(tij, tik) as an exploratory method for assessing the de-
pendence structure in categorical longitudinal responses.
The advantage of regression modeling is that estimation
of LOR(¢;,t;) is possible even when observation times
vary widely among subjects. The principal advantages of
the log-odds ratio summary are as follows:

« It is pairwise unconstrained as opposed to the correla-
tion of binary responses, which may have severe con-
straints imposed by differing marginal means.

» The log-odds ratio is on the same scale as the linear
predictor assuming a logit link, and thus is on a familiar
and interpretable scale.

« It extends naturally to ordinal or nominal responses.

3. ESTIMATION

In this section we outline estimation of the lorelogram.
For parametric models we use a pair of estimating equations.
that allow modeling of the marginal mean and pairwise log-
odds ratio (Heagerty and Zeger 1996; Lipsitz et al. 1991).
We introduce a regularization estimator useful for stabiliz-
ing log-odds ratio estimates influenced by sparse or zero
cells in local pairwise 2 x 2 association tables and suggest a
simple data-driven selection method for the penalty param-
eter. For a nonparametric approach, we adopt a generalized
additive model (Hastie and Tibshirani 1990) for the lorelo-
gram. Pointwise standard errors are obtained by jackknifing
the estimating equations (Lele 1991).

3.1 Estimating Equations

3.1.1 Paired Regression Models. For continuous re-
sponses, Y;;, the dependence structure, is described through
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an empirical variogram after removing any mean trend. This
is accomplished by considering the dependence among the
residuals, R;; = Y;; — ;. Typically a flexible or saturated
mean model is used (Diggle et al. 1994) to avoid bias in
the dependence estimates. We propose using a marginal
generalized linear model to adjust for mean trends. Let
E[Yi;] = pi;. The mean model is given by specifying a
link function, g;, that relates the expected value to covari-
ates: g1(us5) = X;;8. For binary or ordinal data, common
link functions include the logit, probit, and complementary
log-log functions.

Given a model for the marginal mean, we now consider
a model for the association structure. We choose to model
the pairwise odds ratios through a second generalized linear
model. Let W;(; 1y be the pairwise odds ratio measuring the
association between Y;; and Y;;. We consider both a para-
metric model and a nonparametric additive model that can
be represented jointly as

T
92(Yi(jk)) = L ijroe+ Z Sm(Zom,ijk)-
. m=1
Here Z; represents covariates used parametrically and
8m(Zam) represents smooth functions of covariates Zo,
used additively. Common choices for the second link func-
tion g, would include the log and identity functions. In sub-
sequent sections we restrict our attention to the log link.

3.1.2  Faired Estimating Equations. First, we consider
the fully parametric model (r = 0). For estimating the pa-
rameters (3, o), we use a pair of estimating equations. By
defining models for the mean and association we are iden-
tifying only the first two moments of the joint distribution
of a cluster of observations. A likelihood formulation re-
quires a complete model for the joint distribution and is
generally computationally intense (Fitmaurice, Laird, and
Rotnitzky 1993; Heagerty and Zeger 1996). But given only
the first two moments, a semiparametric approach is fea-
sible by defining the estimator (3,&) as the root of the
equations

i B,Uz‘_T -1
0=Ui(B,a)=) a8 Vi (Yi— i)
i=1 /
and
do; 1"
0=up.e) =3 || Vilsi- o
=1

where Y; = vec(Y;;), i = E[Y;],S; = vec((Ys; — pij)
(Yik — wir)), and o; = E[S;]. The weight matrix Vy; =
cov(Y;) is completely determined by the parameters 3 and
a, because o5, = cov(Y;;,Y;) is uniquely defined by the
odds ratio V;;;, and the marginal means (g5, it;) via the
relationship

(o6 + pagpinlloige + (L — pig) (1 — pin)]
[oije — 15 (1 — par))oijn — pir (1 — pij)]
Thus, given g1 (u) = X3 and g2(¥) = Za, we can solve the

foregoing expression to obtain o, as a function of 3 and
(Mardia 1967). The matrix Vo, approximates the covariance

Wik =
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of S; using only the first- and second-moment assumptions.
The estimators defined by these conditions are known to be
consistent and asymptotically Gaussian under mild regular-
ity conditions (Liang and Zeger 1986; Prentice 1988; Pren-
tice and Zhao 1991). Lipsitz et al. (1991) first proposed
using a log-odds ratio model to specify the pairwise covari-
ance structure for binary longitudinal responses and used
similar paired estimating equations to obtain model esti-
mates.

Finally, we note that the valid use of estimating equations
for lorelogram estimation with time dependent covariates
requires careful consideration that both the marginal ex-
pectation and covariance be specified correctly conditional
on the entire covariate vector X; = (X;1,X;2, ..., Xin,)-
Implicit in our notation is the sufficient condition that
ElY;;|1X;] = E[Y;;|X;;]. Pepe and Anderson (1994) have
presented a detailed discussion of issues surrounding the
use of estimating equations with time-dependent covariates.

3.2 Parametric Estimation: Spline Regression

We consider the parametric model by setting r = 0,
thereby reducing estimation of the lorelogram to a para-
metric regression problem. For description of a stationary
dependence structure, we define the covariate z;;, = |t;; —
t:k|, the time separation between the pair of observations,
and use this variable to create a knotted cubic spline basis
matrix that imposes the natural boundary constraints of lin-
earity beyond the range of the data. For K specified knots,
we require K +2 basis vectors. Estimation of the lorelogram
is done by estimation of the parameter ¢, the coefficients
of the natural spline basis elements.

The estimating equation strategy avoids assumptions re-
garding the third- and higher-order moments and as a result
there is no model based estimate of the variance of the sec-
ond moment parameter estimate é&. An empirical estimate
of the variance of (3, @) is obtained through an “informa-
tion sandwich” (Liang and Zeger 1986; Royall 1986; White
1982) given by

N -1 /N
V(B, &) = (Z D};;WiD%) <Z UiU;fp>
i=1 i=1
N -1

i=1

where Do; = {[0(us,04)]/[0(8, )]}, D1; sets do; /00 to 0,
W, is the block diagonal matrix with V7;', and V;! on the
diagonal, and U; = (U7, U%)T. We use this variance esti-
mate and the asymptotic normality of (3, &) to place point-
wise confidence bands around the estimated lorelogram.

3.3 Zero Cell Correction: A Regularization Estimator

Zero cells and sparse cells can cause problems with the
existence of estimates in general log-linear models. Many
researchers routinely add a small constant to every cell to
stabilize estimates (Agresti 1991). In examples, Goodman
(1970) recommended adding 1/2 to every cell for estima-
tion in saturated log-linear models. Similarly, our estimation
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algorithm runs the risk of diverging in highly flexible mod-
els similar to saturated models in classical log-linear anal-
ysis. We propose a solution that is qualitatively similar to
adding a small constant to cells of contingency tables but is
formally motivated in the regression context via a Bayesian
argument. Our approach is related to Bayesian estimation
for contingency tables (Laird 1978; Leonard 1975). Similar
to Laird (1978), we adopt a flat prior on the parameters that
describe the marginal means but adopt a Gaussian prior on
the pairwise association parameters.

The approach that we propose is derived from putting a
weak prior on the association regression parameters. For
the lorelogram using natural splines, we modify the second
estimating function to be

Y 190,1"
Ui.) =) G0 Vil(si - - s
This equation can be derived as an approximation to the
derivative of the log-posterior based on a quadratic expo-
nential family likelihood and a Gaussian prior on « with
mean 0 and covariance As.

More generally, consider a quadratic exponential family
model with independent Gaussian priors on 3 and . The
posterior distribution under this model has the form

(B, a|Y;i=1,...,N))
N
x Hexp Ooi + 0L.Y; + 02.T) x 7(B)n(),

i=1

where 6; = (6y;,07;,0%,)T represents the canonical param-
eters as a function of ,6 and o, Y; = vec(Y;;), and T; =
vec(Y;;Yix), the (5') vector of pairwise products The pri-
ors are assumed to be independent and are given as 7(3) =
MVN(ug, A1) and n(a) = MVN(py, Az). The posterior
mode is given by setting the derivative of the log posterior
to O:

. T -1
i % o Vi Vi
= %73" g Va1, Vi
o Yo mi(B) \ | ATH(B — pp) —0
S; —0i(B, @) A e — pa) ,
where S; = vec((Yi; — pij)(Yie — pik)) and Vi, =
cov(Y;), Vig; = cov(Y;,S;), and Voo, = cov(S;). Direct

solution of this equation is difficult due to the need to re-
cover the third and fourth moments to construct the covari-
ance matrices. An estimating equation approximation is ob-
tained by setting Vi9; = 0 and 00;/93 = 0 (Liang, Zeger,
and Qagqish 1992; Prentice and Zhao 1991). This results in
the pair of estimating functions

* al 8/1'% T -1 —1
Ui(B,a) = Z [56—} V(Y — pi) — AT (B — pg)
i=1
and
* X 801 —1
U8, a Z [ ] VZZz o) — Ay (00— pa).

=1
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Although we motivate the equations U7 = 0, U} = 0 via
a Bayesian formulation, such equations have a long history
in the non-Bayesian literature as well. Penalized likelihood
methods (Green 1987) and ridge regression Hoerl and Ken-
nard 1970) also yield estimating equations of this form.
We now direct attention to the sampling properties of these
equations, deriving asymptotic properties of the resulting
estimators (3*, &*).

Proposition 1. For fixed (pug, A1) and (pq, Az), the esti-
mator (3%, &) obtained as the solution to U} = 0, U} = 0
is weakly consistent as N — oo given standard regularity
conditions.

The proof of this proposition follows the results of Crow-
der (1986), giving general conditions on the consistency of
estimators resulting from the solution of estimating equa-
tions. Note that asymptotically, the estimating functions U,
and U7 are equivalent in the sense that

1 1 1

—U; — =Ut = —ATYHB — pp).

N 1 N 1 N 1 (l6 276} )
Thus although U7 is not unbiased, the bias is O(1/N) for
fixed 3, resulting in a consistent estimator. The equations
Uy, and Uj are similarly asymptotically equivalent. Thus
the following result also obtains:

Proposition 2. For the population parameters By and o,
the estimators (35, &}y) are asymptotically Gaussian with
mean (Bp, ap) and variance Vo,

The asymptotic variance V, is given as the limit lim N x
Vi as N — oo where

) —1

N N
X Z E[UzU,LT] (Z D%—;W'LDlz + A™

i=1 i=1

N
Vn(B,6") = (Z D{;W,;Dy; + A"

i=1

-1
1> |
where Dy;, Do;, and W, are as defined in Section 3.2 and
A is a block diagonal matrix with A; and As on the di-
agonal. We obtain a consistent estimate of the variance by
using the empirical information, Zf’: . U, U7, in place of
SN E[U,UT] (Royall 1986). A sketch of the proof of
this proposition can be found in the Appendix.

In practice, specification of the hyperparameters (g, A1)
and (pq,A2) is somewhat arbitrary. In the example that
follows we have chosen to set AT = 0, thereby eliminating
any shrinkage for the estimation of 3. For estimation of the
lorelogram, one choice is to set A I = M, where )\ is a
small constant to mimic the zero cell correction method of
adding 1/2. Heuristically, adding 1/2 to the cells of a 2 x 2
table is like combining the observed data with weak prior
data that yield an estimated log odds ratio of 0 with large
variance—a prior precision of 1/8 if we use the variance
formula Y 1/(cell count). We see in our example that this
approach yields an estimated lorelogram that tracks closely
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the crude log-odds ratios based on the 1/2 adjustment to
each cell in the pairwise tables.

Alternatively, we can consider the mean squared error
(MSE) for the estimator 6x (A, us) = (B, &y ). Given A
and ps = (g, ta), the MSE can be approximated as

MSE[bx (A, p5)] = E[(6x — 6)(6x — 6)7]
~ [Ta) A6 — ps) (6 — ps) AT+ NE|[Ty |77,

where T = YN DL,W,Dy; + A~ and = = lim(1/N)
Zz_ E[U;, UT] Details are presented in the Appendix. If
we choose A, ~ = AJ for a known matrix J, and fix A; and
s (often at 0) then we can minimize the approximate MSE
as a function of A. But evaluating the MSE requires knowl-
edge of both § and 3. In practice, we substitute a consistent
estimate of 6 and X obtained from a preliminary regression
fit with A small. Thus we obtain adaptive penalization where
the estimator is chosen to minimize the approximate MSE.
In general, MSE(8())) is a matrix, so an appropriate sum-
mary is minimized such as the maximum eigenvalue that
bounds the MSE of all normed linear functions of éy, for
all a € R7,¢g = dim(§), MSE(a”éx) < [, llall2, where
Ay is the maximum eigenvalue of MSE(éy) (Horn and
Johnson 1992). More generally, we consider selection of
) to minimize the maximum eigenvalue of MSE(Bé&y ())),

for a square matrix B, acknowledging that in applications
we may wish to choose B such that Bé = a.

3.4 Nonparametric Estimation: Generalized Additive
Models

. We first restrict attention to the nonparametric estimation
of a single smooth log-odds ratio function. Our interest is
in the function

S(Zijk).

Our approach to estimation of the lorelogram is to use a lo-
cal scoring procedure (Hastie and Tibshirani 1990) in con-
junction with a smoothing spline with specified degrees of
freedom. For the rth iteration, we define the following:
(r)
9

r—1
Niik = 10g(‘1’£(1 k)))

108;(‘1’1(3‘,19)) =

X (Sigr = i (BT, WH)).

(r) (r)
(r) _ ( Omigk —1/q.. Onijn
wijk N (aaijk> v (Smk) <8aijk> )

The local scoring algorithm alternates between a Newton
step for B and updating the association function using the
linearized data d("). The algorithm is summarized as fol-
lows. :

Algorithm.

1. Initialize: (@, 30 r = 1.
2. Update: Take a Newton step for @: 8("—1) — g(r),
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3. Create: Construct d(") and w(r)

4. Update: Fit a smooth of d i k on z;y using weights

wi): @D W),

5. Iterate: Repeat steps 24, r «— r + 1, until the con-
vergence criterion is satisfied, |3 — 3("=1)| o, < &; and
[ @) — w1, < e,

Hastie and Tibshirani (1990) stated results regarding the
convergence and uniqueness of solutions obtained via the
local scoring algorithm for generalized linear models. Our
implementation is an extension from linear exponential
family models to quadratic exponential family models us-
ing a “working independence” weight matrix for the second
moment-estimating equation. When more than one term is
included in the linear predictor for the log-odds ratio re-
gression, backfitting (Hastie and Tibshirani 1990) can be
used to obtain estimates.

Although a kernel smoother or other smoother may be
used, we restrict attention to the use of smoothing splines
with the degree of smoothing fixed by prior specification
of the degrees of freedom. The effective degrees of free-
dom for a smoothing spline is defined as the trace of the
smoother matrix S such that Y = SY. This allows us to
compare the parametric and nonparametric fits more easily.

In the independent data setting pointwise standard errors
are obtained using the smoothing matrix S. For example,
var(Y) = 02887 for independent homoscedastic Gaussian
responses. For dependent data, the covariance of the vector
of responses has a block diagonal structure and additional
computational complexity arises (Berhane and Tibshirani
1995). We choose to use the jackknife estimate of variance
for linear estimating equations as outlined by Lele (1991).
By dropping a single estimating equation, Uj, the result-
ing pseudo-estimates (3(—7), &(=7) can be used to obtain a
consistent estimate of the variance of the complete sample
estimator.

Using the jackknife variance estimator is feasible, be-
cause parameter estimation is computationally easy. We al-
ternate between GEE1 estimation of 8 and working inde-
pendence weighted smoothing of the linearized covariance
pairwise products. In situations where N is large, alternative
resampling methods such as the drop-m jackknife (Shao and
Wu 1989; Wu 1987) or bootstrapping the estimating equa-
tions (Moulton and Zeger 1989) may be computationally
more economical.

For initial values, we have used 8(©) = 3 obtained from
a preliminary fit assuming a constant log-odds ratio o and
have used ng?,)c = &, the estimated common log-odds ra-
tio. We have experienced excellent convergence using these
starting values.

Finally, we have not considered data-driven methods for
the selection of the smoothing parameter used in the non-
parametric empirical lorelogram estimation. We assume
throughout that this parameter has been fixed. A sensitivity
analysis can be performed to investigate the influence of
this parameter. Further research into objective criterion for
the selection of the degree of smoothness is warranted.
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4. EXAMPLE

In this section we use the lorelogram methodology to ad-
dress scientific interest in the dependence structure of re-
peated measures of disease activity. The data are monthly
symptom measures for 90 first-episode schizophrenia pa-
tients from Madras India (Thara, Henrietta, Joseph, Rajku-
mar, and Eaton 1994). After hospitalization each patient
had the presence or absence of six symptoms recorded
monthly. The six symptoms are grouped into two cate-
gories: “positive symptoms” include hallucinations, delu-
sions, and thought disorders; “negative symptoms” include
flat affect, apathy, and withdrawal. Investigators suspect that
schizophrenia is a heterogeneous disorder and that positive
symptoms reflect a temporary disruption in the patient’s
mental health and thus reflect a “state,” whereas negative
symptoms reflect a patient characteristic or “trait,” poten-
tially due to structural differences in the brain. One primary
goal of the data analysis is to characterize the longitudinal
binary series and summarize the evidence supporting the
state—trait hypothesis.

We analyze the first 12 months of data on each of the
six symptoms separately. In addition to time (month), the
patient’s age and gender were recorded. Some observations
are missing, and the validity of the estimating equation ap-
proach depends on the assumption that the data are missing
completely at random.

Table 1. Parametric Lorelogram Models Fit
to the Six Schizophrenia Symptoms

Estimates of positive symptoms

Covariate Hallucinations Delusions Thoughts
Mean regression
Intercept 1.106 (.362) 1.579 (.324) 1.012 (.369)
Time (k1) —2.399 (.428) —3.358 (.423) —2.976 (.419)
Time (k2) —6.113 (.679) —4.083 (.568) —3.000 (.423)
Time (k3) —2.091 (.352) —2.589 (.346) —2.150 (.358)
Age .651 (.299) .378 (.256) —.184 (.306)
Gender —.058 (.305) —.594 (.254) —.634 (.290)
Association regression
Intercept 3.640 (.359) 3.030 (.248) 4.422 (.382)
At (k1) —1.696 (.469) —1.814 (.414) —3.046 (.483)
At (k2) —2.638 (.707) —2.776 (.571) —3.995 (.563)
At (k3) —4.508 (.961) —5.259 (.500) —6.278 (.844)
At (k4) —2.646 (.962) —2.414 (.671) —1.315 (.774)
Estimates of negative symptoms
Covariate Flat affect Apathy Withdrawal
Mean regression
Intercept —.389 (.368) —.739 (.411) —.408 (.374)
Time (k1) —1.665 (.376) —1.362 (.474) —1.434 (.409)
Time (k2) —2.910 (.448) —3.370 (.523) —3.186 (.494)
Time (k3) —1.546 (.304) —1.547 (.364) —1.045 (.326)
Age .642 (.338) .595 (.390) 442 (.352)
Gender 137 (.349) .178 (.365) —.112 (.353)
Association regression
Intercept 3.765 (.396) 3.219 (.418) 3.391 (.345)
At (k1) —.934 (.583) —1.448 (.586) —.961 (.746)
At (k2) —1.245 (.904) —1.335 (.697) —1.986 (.655)
At (k3) —3.699 (.904) —.836 (1.095) —3.043 (1.036)
At (k4) —.872 (.742) 1.828 (1.070) .619 (1.302)

NOTE: The mean model is a marginal logistic regression using the estimated lorelogram for
covariance weighting. Values within parentheses represent standard error.
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Because the patients were enrolled after a psychotic
episode that leads to hospitalization, the frequency of all
symptoms was much higher initially and declined over the
first year. Positive symptoms occurred in approximately
70% of patients in the first month and declined to a preva-
lence of 20% by the twelfth month. Similarly, negative
symptoms had an initial prevalence of 40% that declined
to 10% at the end of the year.

For each symptom (s = 1,2,3,4,5,6), we use a marginal
logistic regression

logit(P[Y;; = 1])

3
= B3+ Bitr + Bil(age; < 21) + B3I (female;).

r=1

Here Y, = 1 if patient 4 has symptom s at time ¢ and 0 oth-
erwise. The covariates t; are natural spline basis elements
using knots at 3 and 7 months, allowing the prevalence to
change smoothly over time. Inclusion of the other covari-
ates allows adjustment of the marginal mean for other po-
tentially prognostic factors.

The state—trait hypothesis is not addressed by the
marginal mean but rather by the nature of the dependence
structure. Symptoms that represent states should exhibit
strong temporal association that declines as observation
times separate. Alternatively, symptoms that represent traits
are expected to exhibit long-range dependence indicating
within-subject association independent of the time lag in
observations. We use the estimated lorelogram to charac-
terize the strength of association as a function of the time
lag, |t;; — ik, to assess the state-trait hypothesis.

4.1 Schizophrenia Data—Spline Regression

As outlined in Section 3.2, a flexible parametric approach
proceeds by constructing a spline basis matrix in the covari-
ate of interest and then performing a parametric regression
fit. We used the covariate z;;, = [t;; — ¢;x| to generate a
natural spline basis given knots at At = (2,5,8) months.
The log-odds ratio regression thus is given by

IOg\P(Kz’ ?c) - zgk:as’
where Z7;, = [1, zfl,i, o 1(34,1] the basis elements evaluated
for the pair of times ¢;; and ¢;;. Again we assume a separate
function for each of the six symptoms.

Table 1 gives the mean and association parameter esti-
mates for each of the six symptoms. Figure 2 shows the
fitted lorelograms for the six symptoms with asymptotic
pointwise 95% standard error bands. It also shows the crude
pairwise log-odds ratios obtained from creating 2 x 2 tables
for each of the (12) combinations of observation times with
each point’s asymptotic 95% confidence limits. Note that
for all three positive symptoms, the estimated lorelogram
decays to 0, supporting the hypothesis that these symptoms
represent “states.” However, none of the lorelograms for the
negative symptoms decays to 0, nor is O included in any
pointwise 95% confidence band. These functions support
the “trait” hypothesis for the negative symptoms, because
they exhibit strong long-range dependence.
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Figure 2. Parametric Lorelograms Fit to the Six Schizophrenia Symptoms Using a Natural Spline Basis With Knots at At = 3, 5, 7 Months.
(a) Hallucinations; (b) delusions; (c) thoughts; (d) flat affect; (e) apathy; (f) withdrawal The dashed lines are pointwise 95% confidence bands. Also
shown are the crude pairwise log-odds ratios and corresponding asymptotic 95% confidence limits. o, the crude zero cell corrected log-odds ratio

computed from a 2 x 2 table of Yj versus Yi; —, the confidence limits for these point estimates.
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Table 2. Maximum Eigenvalue for the Mean Squared Error Matrix as a Function of A,
Where A7" = 0, and A, " = \J Such That J = \sx5 With (1, 1) Entry Set to 0

A Hallucinations Delusions Thoughts Flat affect Apathy Withdrawal
0 2116 637 1.762 1.538 2.719 2.559
.05 1.849 588 751 1.355 1.328 2.149
10 1.758* 577* 1.128 1.269 .851 1.844
15 1.797 .607 2.267 1.254* .663 1.616
20 1.943 682 3.785 1.293 .609* 1.451
25 2.179 .804 5.473 1.379 616 1.343
.30 2.487 967 7.214 1.503 648 1.296*
.35 2.850 1.164 8.944 1.658 .693 1.314
40 3.251 1.388 10.626 1.834 746 1.386
45 3.679 1.635 12.241 2.027 .802 1.496
50 4125 1.900 13.780 2.230 861 1.627
* Minimum value.
4.2 Schizophrenia Data—Regularization Estimator ©
One feature of Figure 2 is the wide confidence bands for
At = 11 for both apathy and withdrawal. This is due to
the sparsity of discordant pairs at the long time lags for <t A
these symptoms. Thus we consider the zero cell correction
methodology of Section 3.3 to stabilize these estimators. OC
We choose A7! = 0, yielding no shrinkage of 3, and in- % SV
vestigate A;' = \J. For simplicity, and because we used O
approximately orthonormal basis elements, we let J be the
identity matrix with the upper left diagonal element set to o
0. Using this J results in (&g, ...,&5) shrinking to O as
A — oo. Maximal X reduces the association model to an
intercept model, or an exchangeable association model. A
We then considered the approximate MSE of the estima- ' ' ' ' '
tor &(A) as described in Section 3.3 using an estimate of 2 4 6 8 10
and X obtained from the regression fit with A = 0. Because
the MSE(&n()\)) is a matrix, we selected the maximum delta t
eigenvalue as the quantity to minimize. Table 2 displays se-
lected values of A and the corresponding MSE for each of (@)
the six symptoms. Note that shrinkage toward the exchange-
able model does not provide a substantial reduction in MSE ©
for the first two positive symptoms. But A = .05 does re-
duce the MSE for thoughts by (1.76 — .75)/1.76 = 57%,
whereas for negative symptoms A = .20 yields a substantial < A
reduction in the MSE for apathy, (2.72 — .61)/2.72 = 67%,
and A = .30 reduces the MSE for withdrawal by 49%. Fig-
ure 3 displays the lorelograms obtained using the optimal Q o A
A for apathy and withdrawal. Note that the point estimates 8’
remain virtually unaffected for At less than 6 but are stabi-
lized for the longer lags, as evidenced by both the reduction o
in the confidence bands for both symptoms and the damp-
ened trajectory for apathy.
o

4.3 Schizophrenia Data—Nonparametric Estimator

We also fit nonparametric lorelograms to the six symp-
toms. This estimator is desirable, because we do not need
to select the number or position of knots as in the spline
estimator. We used the algorithm described in Section 3.4
using smoothing splines with the degrees of freedom fixed
at 5. Figure 4 shows the fitted nonparametric functions and
pointwise 95% confidence bands obtained from jackknifing
the estimating equations (Lele 1991). These functions are

10
delta t

(b)

Figure 3. Regularization Estimator for (a) Apathy (A = .20) and (b)
Withdrawal (A = .30), with Pointwise 95% Confidence Limits Shown Over
the Crude Log-Odds Ratios. Also displayed (— — —) is the point estimate
and confidence bands obtained using A = 0.
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Figure 4. Nonparametric Lorelograms Fit to the Six Schizophrenia Symptoms Using a Smoothing Spline with df = 5. (a) Hallucinations; (b)
delusions; (c) thoughts; (d) flat affect; (e) apathy; (f) withdrawal. Pointwise 95% jackknife based confidence bands are shown. The standardized
adjusted covariance residuals, njk + /Wik (i — ik ), are also plotted (with At jittered). (- — —), the point estimate obtained using natural splines.
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Figure 5. Nonisotropic Lorelograms Fit to the Six Schizophrenia Symptoms Using Natural Splines, Working Independence for V;4;, and A =
.05. (a) Hallucinations; (b) delusions; (c) thoughts; (d) flat affect; (e) apathy; (f) withdrawal.

quite similar to the parametric fits, with the exception of
slightly wider confidence bands. Interestingly, the nonpara-
metric fits appear to have dampened trajectories for At > 9
for thoughts, apathy, and withdrawal, those symptoms for
which the regularization estimator yields the greatest reduc-
tion in MSE. Again, the fitted lorelograms clearly support
the state-trait hypothesis.

4.4 Schizophrenia Data—Nonisotropic Model

Finally, Figure 5 displays nonisotropic association mod-
els fit to the six symptoms. We used a natural spline ba-
sis in |t;; — t;| with knots at 2, 5, and 8 months; a nat-
ural spline basis in (t;; + ¢;;) with knots at 7, 12, and 17
months; and their tensor product. We selected these bases
for the bivariate surface because the log-odds ratio is sym-
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metric in the two times. These association surfaces suggest
that the isotropy assumption is plausible for these binary
series. The greatest violation of isotropy appears for hallu-
cinations, where a trend of increasing association with later
times is evident.

5. DISCUSSION

We have proposed methods for the graphical exploration
of the dependence structure in categorical longitudinal data.
Two regression models are used: a generalized linear model
for the marginal mean; and a log linear model for the pair-
wise log-odds ratio. A parametric estimator for the associa-
tion function uses a flexible cubic spline basis with natural
boundary constraints, whereas a nonparametric estimator
extends generalized additive models to the estimation of
covariance components. Finally, we have also introduced a
shrinkage parameter for parametric models that stabilizes
sparse or zero cells in the association regression.

The flexible association regression can be used to charac-
terize components of covariance due to serial dependence
or cluster heterogeneity. For the schizophrenia data, we
used the fitted lorelograms to contrast the chronicity of two
classes of symptoms.

Although we have focused specifically on models for lon-
gitudinal data, the methods that we have developed are
potentially useful for general dependent data structures.
For example, given spatial categorical responses, Y; mea-
sured at locations s;, we may use the model log ¥(Y;,Y;) =

f(llsi — s;]|) to characterize isotropic dependence as mea-
sured on the log-odds scale. In addition, random-effects
models assume that the observed dependence is due to
shared latent effects. Using the empirical lorelogram with
covariates to be modeled as random effects permits direct
characterization of the marginal pairwise dependence and
assessment of the parametric covariance assumptions.

Finally, an open problem is the selection of the smooth-
ing parameter for the nonparametric lorelogram estima-
tor. Cross-validation of the covariance pairwise products
by dropping a cluster at a time (see Rice and Silverman
1991 and Zeger and Diggle 1994 for mean function cross-
validation) may provide data-driven methods for the selec-
tion of the penalty parameter and warrant exploration.

APPENDIX: PENALIZED ESTIMATING FUNCTIONS

Define (B3, &}v) as the solution to the estimating equations

0=UT(,3aa)=Z l:?)_lg_] 112(Y NZ) l_l(ﬁ_uﬁ)

i=1

and

0-Uiga) = 3 [22] Viis. o -

i=1

A2_1(a - /J'Ol))

where (ug, A1) and (po,Az) are fixed and Y; = vec(Yi;),
E[Y] = pi,Si = vec((Yij — pig)(Yie — pir)), Vire = cov(Yy),
and Vag; & cov(S;).
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For ease of notation, we combine the two functions to form a
single function:

Uk (6) = ZD WR; — A6 — ps),
where 67 = (BT, &), pi = (5, pk), D1 is a block diagonal
matrix with [Ou;/00], and [0o;/0a] on the diagonal, similarly
W, has Vii; and Vay; on the diagonal, RY = ((Y; — u:)7,
(S; — 0:)T), and A is block diagonal with A; and A, on the
diagonal. Define Do; = {[0(us, 03)]/[0(8, @)}

The estimator &y is defined by

0= Ux(bn).
Using a multivariate Taylor series expansion, we obtain
0 =Un(6) - [Zn](8v — 8) + op(llbn — 8]"),

where Tiy = —E[(8/08)U%] = 3 DLW;Dy; + A~". Under
mild regularity conditions, we can apply the central limit theo-
rem for independent but nonidentically distributed random vectors
(Serfling 1980, p. 30):

N
% > DLWiR; — MVN(0, %)

and

N
.1
3y = hm N MZlD,iFZWICOV(Rz)WzD“
This result, together with the Taylor series approximation, yields
the large-sample approximation

(bn — 8) ~ MVN(—[Zx] " A7 (6 — ps), [ZN] T INE)TN 7).

Note that under regularity conditions, NZ3; converges to a posi-
tive definite matrix, implying that the bias of the estimator by is
O(1/N).

Therefore, the MSE of 6y can be approximated by

MSE(8x) = E[(bn — 6)(6n — 6)7]
~ TN AT (6 — ) (6 — ps) AT IN T
+ [Zh]) VST

[Received November 1995, Revised August 1996.]
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