March 5, 2005

Biostat 656: Lab 2

Purpose:

Continue to learn WinBUGS and STATA
Last time, we learned how to use WinBUGS to estimate the mean for continuous data when the variance is known.  We compared this estimate, which was calculated using Bayesian methods, to that from STATA, which was just the sample mean.

In this lab, we will perform a similar comparison, however, we will assume that the variance is unknown.  We will compare these results to those from STATA. We will also compare estimates of proportions using the two methods.

Normal Data, Variance Unknown:

Imagine that we want to estimate a mean and a variance.  In the introductory biostatistics classes, we know that estimators of the mean and standard deviation are the sample mean and sample standard deviation.  We used a frequentist framework in which we assumed that the sampling distribution of these estimators was related to the estimated values that we would see if we repeated an experiment over and over.

Under a Bayesian framework, the variability of parameter estimates does not come from the idea of repeating an experiment.  The uncertainty comes from a assuming prior uncertainty (technically a prior distribution) and updating this uncertainty with the observed data to obtain posterior uncertainty (technically a posterior distribution) .  Here, we will use Winbugs to obtain the posterior mean and standard deviations using a Bayesian framework.
Example (from Lawrence Joseph’s website at McGill):

http://www.medicine.mcgill.ca/epidemiology/Joseph/651_bugs_ex.html
The data are the same as last week:  20 normally distributed measurements, x1, …, x​20,  with mean µ and standard deviation (.  Last time, ( was assumed to be equal to 1.  This time, ( is unknown, so we have to put a prior on it. This is done by putting a prior on ( = 1/(2.

	Lab 1:
	Lab 2:

	xi  ~ Normal(µ, 1)

	xi  ~ Normal(µ,(2)

	µ  ~ Normal(0, 10000)
	µ  ~ Normal(0, 10000)

	
	( = (-2  ~ Gamma(0.001,0.001)


The above prior specification for ( results in a prior mean of 1 and prior variance of 1000.

The following program will implement our specifications and give us the posterior mean of µ:

model

{ 

    for (i in 1:n) 

      { 

         x[i]   ~ dnorm(mu,tau); 

       } 

         mu     ~ dnorm(0,0.0001); 

         tau    ~ dgamma(0.001,0.001); 

         sigma<-1/sqrt(tau); 

         xbar <- mean(x[]); 

} 

# Data

list(x=c( -1.10635822,  0.56352639, -1.62101846,  0.06205707,  0.50183464, 

           0.45905694,  -1.00045360, -0.58795638,  1.01602187, -0.26987089 , 

           0.18354493 , 1.64605637, -0.96384666,  0.53842310, -1.11685831, 

           0.75908479 , 1.10442473 , -1.71124673,  -0.42677894 , 0.68031412),

     n=20)

# Initial values

list(mu=1, tau=.33)

#notice that mu and tau both have initial values

After implementing the steps outlined in Lab 1…

Results:

node
 mean
 sd
 MC error
    2.5%
  median
     97.5%
    start
sample

mu         -0.06547   0.2241        0.00228   -0.5024
-0.06618
0.3792    1001    10000

sigma      1.002      0.172
        0.001815   0.7298
 0.9805
1.4          1001    10000
When ( was assumed known, we saw that the estimate (SE) of µ was -0.06433 (0.2234).  

Here’s a histogram of µ, with a normal density overlay.  The normal fits well.
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Compare this with the fixed effects estimate of µ(SE) from STATA in lab 1.  

Binomial Data

As we know, not all data are continuous.  Sometimes an outcome is binary, and we would like to estimate the probability of a ‘success.’  

Here’s another example from Lawrence Joseph’s website.

We observe n=20 trials of a binary outcome.  We assume that each trial is independent and has the same probability, (, of producing a success, so we assume a Bernoulli outcome (binomial for 1 trial).  We have no a priori idea what ( is, so we assume a Beta prior distribution with parameters (1,1).  This prior specification is equal to the uniform distribution from 0 to 1.   

Let’s call our data x1, …, x​20.
So we have

xi  ~ Bernoulli((), meaning xi can equal 0 or 1, P(Xi=1)= (
(  ~ Beta(1,1) = Unif(0,1) (Beta(1,1) is just a way of specifying a uniform prior distribution using the Beta distribution.  Note that the Beta distribution is different from the Beta coefficients you learn about in the introductory biostatistics courses.) 
The following program will produce the posterior distribution of (:

model

{ 

    for (i in 1:n) 

      { 

         x[i]   ~ dbern(theta); 

       } 

         theta ~ dbeta(1,1);  #  Prior density for theta 

} 

# Data

list(x=c(0, 0, 0, 0 ,0, 0, 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1, 1, 1, 1, 1, 1),

     n=20)

#I chose the following initial value

list(theta=0.5)
node
 mean
 sd
 MC error
   2.5%
median
97.5%
start
sample

theta
0.317
0.09729
0.001088
  0.1462
0.3117
0.5211
1001
10000

From the data, we see that we have 6 successes out of 20 trials, which would result in estimate (SE) of 0.300(0.102). 

It turns out that the prior mean of ( is 0.5 = (1/(1+1)), but the posterior mean is = (#successes + 1)/(#trials +1 + 1) = 0.318. That is, the posterior mean can be interpreted as a weighted average of the data mean and the prior mean, weighted by the number of ‘trials’.  The number of ‘prior trials’ is 2, the sum of the parameters of the Beta(1,1) distribution.

To fit multilevel models in STATA with a binary outcome, we will use gllamm.   Fitting models in STATA under a frequentist framework is not as flexible as in Winbugs.  We need to assume that the data came from two trials.  Perhaps we can think of one trial as being the "prior" trial and we are combining the prior information with new data to get a posterior estimate.  Hence, our dataset might look something like this:
     +-----------------+

     | study   outcome |

     |-----------------|

  1. |     0         0 |

  2. |     0         0 |

  3. |     0         0 |

  4. |     0         0 |

  5. |     0         0 |

     |-----------------|

  6. |     0         0 |

  7. |     0         0 |

  8. |     0         0 |

  9. |     0         0 |

 10. |     0         1 |

     |-----------------|

 11. |     1         0 |

 12. |     1         0 |

 13. |     1         0 |

 14. |     1         0 |

 15. |     1         0 |

     |-----------------|

 16. |     1         1 |

 17. |     1         1 |

 18. |     1         1 |

 19. |     1         1 |

 20. |     1         1 |

     +-----------------+

To fit this data, we use the gllamm command in STATA. 
xi: gllamm outcome, link(logit) fam(binom) i(study)

number of level 1 units = 20

number of level 2 units = 2 

Condition Number = 1.2051511

gllamm model

log likelihood = -11.905484

------------------------------------------------------------------------------

     outcome |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       _cons |  -.9542323   .7710688    -1.24   0.216    -2.465499    .5570347

------------------------------------------------------------------------------

Variances and covariances of random effects

------------------------------------------------------------------------------

***level 2 (study) 

    var(1): .6091329 (1.359696)

------------------------------------------------------------------------------
Now we will estimate the marginal probability of the outcome.  By marginal, we mean the overall probability, not the study specific probabilities.
gllapred phat, mu marginal

(mu will be stored in phat)

log-likelihood:-11.905484

. tab phat

       phat |      Freq.     Percent        Cum.

------------+-----------------------------------

   .3005217 |         20      100.00      100.00

------------+-----------------------------------

      Total |         20      100.00 
Just what we thought!

To obtain the study-specific probabilities we do the following.
. gllapred phatstudy, mu

(mu will be stored in phatstudy)

log-likelihood:-11.905484

. table study, c(mean phatstudy)

--------------------------

    study | mean(phatst~y)

----------+---------------

        0 |      .19317582

        1 |      .40682418

--------------------------

