April 26, 2005

Biostat 656: Lab 5

Purpose: Specifying models and unifying ideas about fitting 2-level models in STATA and WinBUGS.

Labs 2 through 4 involved fitting a variety of multilevel models in STATA and WinBUGS. These models were explained in the context of specific examples. Today, we are going to generalize the syntax of these models and explain how small changes can produce many different 2-level models.

1. Writing down models

Before starting any analysis, it is a good idea to write down the equation that represents your model so that you know exactly what you are modelling. This will help us interpret computer output. We can use the examples from last class to see how to do this. Let’s start with the example of rats’ weights over time.

gllamm model

 log likelihood = -544.68643

 --

 weight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

 day | 6.191854 .1046103 59.19 0.000 5.986821 6.396886

 _cons | 106.4762 2.268349 46.94 0.000 102.0303 110.9221

--

Variance at level 1

--

 36.272213 (5.4276456)

Variances and covariances of random effects

--

***level 2 (id)

 var(1): 110.83472 (40.291296)

 cov(2,1): -.82443033 (1.390935) cor(2,1): -.15590509

 var(2): .25229668 (.08511246)

--

In the above model, we see that we have two fixed effects coefficients, one level 1 variance component and 3 level 2 variance components for rat i at time j. The model here is hence,

Y_ij = (​1 + (2 day_ij + b_1i + b_2i day_ij + e_ij

where e_ij ~ N(0,(e2)

where
[image: image1.wmf]÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

2

2

12

12

2

1

,

0

0

~

2

_

1

_

s

s

s

s

MVN

i

b

i

b

We do not subscript some notation (for example write dayij instead of day_ij) simply for ease of presentation. Note that in trying to simplify output, the STATA output can be be misleading. (​1 = _cons and (​2 = day. When STATA specifies the variable names in the model, it is attaching them to the coefficients, not to the actual variables. Too often, we are tempted to look at the output and write that our model is

Y_ij = _cons + day_ij + b_1i + b_2i + e_ij

which is definitely not correct.

Now for the tricky part. How do we identify models in Winbugs code? The following gives a model that is equivalent but not identical to the STATA model above.

model

{

for(i in 1 : N) {

beta[i , 1:2] ~ dmnorm(mu.beta[], R[,])

for(j in 1 : T) {

Y[i , j] ~ dnorm(mu[i , j], tau.Y)

mu[i , j] <- beta[i , 1] + beta[i , 2] * x[j]

}

}

mu.beta[1:2] ~ dmnorm(mean[],prec[,])

R[1:2 , 1:2] ~ dwish(Omega[,], 2)

tau.Y ~ dgamma(0.001, 0.001)

sigma.Y <- 1 / sqrt(tau.Y)
sigma.beta[1:2,1:2] <- inverse(R[,])
}

Y_ij = (​_ij + e_ij

where (​_ij = B​1i + B​2i day_ij

We can substitute to see,

Y_ij = B​1i + B​2i day_ij + e_ij

where
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

2

2

12

12

2

1

2

1

2i

1i

,

~

B

B

s

s

s

s

b

b

MVN

We see that the model is equivalent to the model above, but the conceptualization is slightly different.

Once a model is written down, it is necessary to closely examine the model to determine how to interpret the coefficients. Let’s think about one of the models in homework 2 that confused some people:

xi, prefix(): logit death hospid_1 i.hospid, noconstant asis

--

 death | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

 hosp1 | -18.20289

 hosp2 | -1.977163 .2514913 -7.86 0.000 -2.470077 -1.484249

 hosp3 | -2.630089 .3660724 -7.18 0.000 -3.347577 -1.9126

 hosp4 | -2.809926 .1518158 -18.51 0.000 -3.10748 -2.512373

 hosp5 | -3.233764 .3604526 -8.97 0.000 -3.940239 -2.52729

 hosp6 | -2.644537 .2870323 -9.21 0.000 -3.20711 -2.081964

 hosp7 | -2.737249 .3439555 -7.96 0.000 -3.41139 -2.063109

 hosp8 | -1.780949 .1941465 -9.17 0.000 -2.161469 -1.400428

 hosp9 | -2.623633 .276785 -9.48 0.000 -3.166121 -2.081144

 hosp10 | -2.409195 .3691016 -6.53 0.000 -3.132621 -1.685769

 hosp11 | -2.057654 .1972005 -10.43 0.000 -2.44416 -1.671148

 hosp12 | -2.639057 .2112886 -12.49 0.000 -3.053175 -2.224939

--

In this model,

log Pi/(1-Pi) = (1hosp1+(2hosp2+.....+(12hosp12

Can we interpret exp((2) = .138 as the odds ratio of death in hospital 2? Surprisingly, we can’t! When we talk about odds ratios, we are talking about comparing odds in two different groups. Because we do not have an intercept (constant) in the model, there is no baseline reference group to which we are comparing hospital 2. Hence, exp((2) = .138 is simply the odds of dying in hospital 2.

Odds = P1/(1-P1) for some P1

Odds Ratio = [P1/(1-P1)]/ [P2/(1-P2)] for some P1, P2

. xi, prefix(): logit death hospid_1 i.hospid, asis

i.hospid hospida1-12 (naturally coded; hospida1 omitted)

Logit estimates Number of obs = 2814

 LR chi2(11) = 38.53

 Prob > chi2 = 0.0001

Log likelihood = -722.65438 Pseudo R2 = 0.0260

--

 death | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

 hosp1 | -16.24106

 hosp2 | .4320321 .4466361 0.97 0.333 -.4433586 1.307423

 hosp3 | -.2208938 .5198509 -0.42 0.671 -1.239783 .7979952

 hosp4 | -.4007316 .399104 -1.00 0.315 -1.182961 .3814979

 hosp5 | -.8245696 .515909 -1.60 0.110 -1.835733 .1865934

 hosp6 | -.235342 .4675719 -0.50 0.615 -1.151766 .6810822

 hosp7 | -.3280545 .5045209 -0.65 0.516 -1.316897 .6607882

 hosp8 | .6282463 .4170477 1.51 0.132 -.1891522 1.445645

 hosp9 | -.214438 .4613522 -0.46 0.642 -1.118672 .6897957

 hosp11 | .3515406 .4184782 0.84 0.401 -.4686616 1.171743

 hosp12 | -.2298625 .4252985 -0.54 0.589 -1.063432 .6037072

 _cons | -2.409195 .3691016 -6.53 0.000 -3.132621 -1.685769

--

Had we instead made hospital 10 the reference group and fit a model with an intercept, then exp((2) = 1.54 is the odds ratio comparing the odds of death in hospital 2 to the odds of death in hospital 10. Those in hospital two have 1.54 times the odds of death compared to those in hospital 10. The odds of death in hospital 2 is

exp((0+(2)=exp(-2.409195+ .4320321) = 0.138, which is precisely what we found above.

STATA

We've already covered random intercept and random slope models, which are special cases of 2-level models. Today, we will generalize these models.

1. Random Intercept model

general syntax:

gen cons=1

eq int: cons

xi: gllamm level-1_outcome level-2_pred, link(LINKFUNC) fam(FAMILY) i(level-2) nrf(1) eqs(int) adapt nip(5)

Where link typically equals logit, log P(Yij=1)/(1-P(Yij=1)), or identity, Yij.

The family denotes the distribution of the Yij variables. For binary data, we generally assume that the family is Binomial, and for continuous data, we often assume the family is normal.

We typically associate link functions with specific families. For example, we generally use the logit link with the Binomial distribution and we generally use the identity link with the normal distribution. There are a range of other link functions (such as probit or log) and families (such as gamma or poisson) that we can specify.
If there are no predictors in the model statement, this model would be a random-effects ANOVA. The mean of the level-1 outcome is the fixed effect, subject to random deviations due to the level-2 effect. Another name for this model is the unconditional means model.

However, if we add a level-2 predictor to the model, we can see if some of the random level-2 specific variation is “explained by” this predictor. The output provides a test of the fixed effects. In addition, we can see if the intercept covariance parameter has diminished with the addition of the level-2 predictor.

Level-1 predictors may also be added as fixed effects to the model:

gen cons=1

eq int: cons

xi: gllamm level-1_outcome level-1_pred level-2_pred, link(LINKFUNC) fam(FAMILY) i(level-2) nrf(1) eqs(int) adapt nip(5)

This model assumes that there is no cluster effect in the slopes. That is, the slope is not allowed to differ across clusters.

2. Random Slope Model

Since the data are multilevel, we can assume that the effect of level-1 predictors may be different across level 2 clusters.

General syntax:

gen cons=1

eq int: cons

eq slope: level-1_pred

xi: gllamm level-1_outcome level-1_pred level-2_pred level-1_pred*level-2_pred, link(LINKFUNC) fam(FAMILY) i(level-2) nrf(2) eqs(int slope) adapt nip(15) nocorrel

First, consider the model without level-2 predictors. This model allows the intercept and level-1 slope to differ across level-2 clusters. If we include level-2 predictors, we can see if the random differences in the slope and intercept can be “explained by” the level-2 predictors. That is, the random effects are functions of the level-2 predictors.

Notice the nocorrel statement. Since we have more than one random effect, we need to specify the covariance between these effects. nocorrel stands for not correlated, which is not generally a realistic assumption. The default matrix for STATA is unstructured. However, if your model has many random effects, then a uniform or other covariance structure should be specfied; at the present time, it seems that gllamm only gives the options of unstructured and uncorrelated.

If both level-1 and level-2 predictors are included, but no interaction term is included, then the level-2 predictors are “explaining” part of the variability of the random intercept, but not the random slope. This will be more transparent when we look at the WinBugs code.
WinBUGS

1. Random intercept model

general syntax:

model{

for(j in 1:T){

 for(i in 1:N){

Y[i,j] ~ dnorm(mu[j] ,tau.e)

}

mu[j] <- beta0 + beta1*level-2_pred[j]+b[j]

b[j] ~ dnorm(0,tau.b)

}

beta0 ~ dnorm(0,1.0E-6)

beta1 ~ dnorm(0,1.0E-6)

sigma.b <- 1/sqrt(tau.b)

sigma.e <- 1/sqrt(tau.e)

}
If there are no level-2 predictors, the model reduces to random effects ANOVA. The term sigma.b measures the amount of variability in the outcome across the level-2 clusters. By adding the level-2 predictors, we can see if this variability is “explained by” cluster-specific predictors. In addition, we can compare the value of sigma.b before and after adding the level-2 predictor.

2. Random slope model.

model{

for(j in 1:T){

for(i in 1:N){

mu[i,j] <- (beta00 + beta01*level-2_pred[j] +b[1,j])

+ (beta10+beta11*level-2_pred[j]+b[2,j])*level-1_pred[i,j]

Y[i,j] ~ dnorm(mu[i,j],tau.e)

}

b[1:2,j] ~ dmnorm(mean[],R[,])

}

R[1:2 , 1:2] ~ dwish(Omega[,],2)

beta00 ~ dnorm(0,1.0E-6)

beta01 ~ dnorm(0,1.0E-6)

beta10 ~ dnorm(0,1.0E-6)

beta11 ~ dnorm(0,1.0E-6)

sigma.e <- 1/sqrt(tau.e)

mean[1] <- 0

mean[2] <- 0

}
The term (beta00 + beta01*level-2_pred[j] +b[1,j]) can be interpreted as the level-1 intercept, which is random across level-2 and may be explained by level-2 predictors.

The term (beta10+beta11*level-2_pred[j]+b[2,j]) can interpreted as the level-1 slope, which is random across level-2 and may be explained by level-2 predictors.

If the beta11 term were not in the model, the random slope would be able to vary “unexplained” across level 2. However, adding the beta11 term allows portions of the random slope to be “explained” by level-2 predictors.

Generalizing the random slope and random intercept models to binary outcomes is a snap!

1. Replace mu[] with eta[]

2. create p[] <- eta[]/(1+eta[])

3. replace Y[i,j] ~ dnorm[mu[],tau.e) with Y[i,j] ~ dbin(p[], n[i,j])

 or dbern(p[])

4. Don’t need tau.e or sigma.e

([] may be [i,j] or [j], depending on the model.)

Code for Random Intercept:

model{

for(j in 1:T){

 for(i in 1:N){

Y[i,j] ~ dbin(p[j], n[i,j])
}

eta[j] <- beta0 + beta1*level-2_pred[j]+b[j]

p[j] <- eta[j]/(1+eta[j])

b[j] ~ dnorm(0,tau.b)

}

beta0 ~ dnorm(0,1.0E-6)

beta1 ~ dnorm(0,1.0E-6)

sigma.b <- 1/sqrt(tau.b)

}
Code for Random Slope:

model{

for(j in 1:T){

for(i in 1:N){

eta[i,j] <- (beta00 + beta01*level-2_pred[j] +b[1,j])

+ (beta10 + beta11*level-2_pred[j] +

b[2,j])*level-1_pred[i,j]

p[i,j] <- eta[i,j]/(1+eta[i,j])
Y[i,j] ~ dbin(p[i,j],n[i,j])

}

b[1:2,j] ~ dmnorm(mean[],R[,])

}

R[1:2 , 1:2] ~ dwish(Omega[,],2)

beta00 ~ dnorm(0,1.0E-6)

beta01 ~ dnorm(0,1.0E-6)

beta10 ~ dnorm(0,1.0E-6)

beta11 ~ dnorm(0,1.0E-6)

mean[1] <- 0

mean[2] <- 0

}
PAGE
3

_1176034604.unknown

_1176034895.unknown

