October 1, 2006

Biostat 656:  Lab 6

Purpose:  Introduce Poisson regression in WinBUGS and STATA
By “Poisson outcomes,” we mean counts.  Recall that count data is usually assumed to have a Poisson distribution indexed by a mean count parameter.  Our goal is to estimate this parameter. 

Unlike normal distribution, whose expectation and variance are not related, the mean of a Poisson distribution equals its variance. For count data, a phenomenon called “over-dispersion” is often observed, which means the sample variance is greater than the sample mean. So if we assume Poisson distribution to this kind of data, we need to account for over-dispersion.

Consider the Salm example in WinBUGS.  These mutagenicity assay data consist of the number of Salmonella colonies for three plates by dose of quinoline (6 different doses). From the following table, we can see that there probably is over-dispersion.

Summary for variables: y

     by categories of: dose 

    dose |      mean  variance

---------+--------------------

       0 |  21.66667  49.33333

      10 |  18.33333  6.333333

      33 |        25        73

     100 |  45.66667  457.3333

     333 |  37.33333  16.33333

    1000 |  29.66667  126.3333

---------+--------------------

   Total |  29.61111  179.0752

------------------------------

One way to account for over-dispersion is to using random-intercept. It basically relaxed the assumption that all the observations are independent, and then the total variance can be partitioned into two parts, with-in group variance and between-group variance.

Let:

yij | xi, (ij ~ Poisson(µij) i=1,..,3, j=1,…,6

Where log(µij) = ( + (*log(xi + 10) + (*xi + (ij
(ij ~ Normal(0, (2)

(, (, and tau = (-2 have the usual flat priors.

WinBUGS

The program is:

model


{



for( i in 1 : doses ) {




for( j in 1 : plates ) {





y[i , j] ~ dpois(mu[i , j])





log(mu[i , j]) <- alpha + beta * log(x[i] + 10) + 






gamma * x[i] + lambda[i , j]





lambda[i , j] ~ dnorm(0.0, tau)





}



}



alpha ~ dnorm(0.0,1.0E-6)



beta ~ dnorm(0.0,1.0E-6)



gamma ~ dnorm(0.0,1.0E-6)



tau ~ dgamma(0.001, 0.001)



sigma <- 1 / sqrt(tau)


}

list(doses = 6, plates = 3,



y = structure(.Data = c(15,21,29,16,18,21,16,26,33,27,41,60,33,38,41,20,27,42),








.Dim = c(6, 3)),



x = c(0, 10, 33, 100, 333, 1000))

list(alpha = 0, beta = 0, gamma = 0, tau = 0.1)

The results are:

  node
 mean
 sd
 MC error
  2.5%
median
97.5%
start
sample

  alpha
 2.156
 0.4076
 0.03642
 1.346
 2.164
 3.056
 1001
 10000


  beta
 0.3153
 0.1118
 0.0101
 0.07164
 0.3132
 0.5445
 1001
 10000


  gamma -9.818E-4 4.823E-4 3.885E-5 -0.001977 -9.648E-4 -8.369E-6 1001
 10000


  sigma
0.2614
 0.08064
 0.002819
 0.1254
 0.2527
 0.4438
 1001
 10000
Over-dispersion not only exists in Poisson models, it also exits in other situations like logistic models. Recall the seed example, we also used Gaussian random intercept to account for clustering, the source of over-dispersion. 

There are other ways to account for over-dispersion, For instance, with count data, we could assume negative-binomial distribution instead of Poisson distribution; with logistic model, we could use beta-binomial distribution.

If you are curious how random-intercept works to account for over-dispersion, let’s look at the mean and the variance of yij .


E( yij | xi) = E[ E(yij| xi, (ij) | (ij] =  E[µij | (ij]

                        = E[ ( + (*log(xi + 10) + (*xi + (ij | (ij]

                        = ( + (*log(xi + 10) + (*xi 

          Var ( yij | xi) = E[ Var ( yij | (ij, xi) ] + Var [ E( yij | (ij, xi) ]

                            = E[ µij ] + Var[ µij ]

                            = ( + (*log(xi + 10) + (*xi + (2

The first equation is to show we have the same marginal mean structure.  The second equation shows the partition of total variance, within-group variance (( + (*log(xi + 10) + (*xi , the variance from Poisson distribution) and between-group variance ((2).

Stata

There are two ways to fit this random-intercept Poisson regression: using gllamm or using xtpoisson. 
gen log_dose = log( dose + 10 )

gllamm y  log_dose dose, i(plate) link(log) fam(poisson) adapt nip(20)

Results:
number of level 1 units = 18

number of level 2 units = 3

Condition Number = 2141.9969

gllamm model

log likelihood = -61.906992

------------------------------------------------------------------------------

           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

    log_dose |   .3378385   .0565929     5.97   0.000     .2269184    .4487586

        dose |  -.0011038   .0002442    -4.52   0.000    -.0015824   -.0006251

       _cons |    2.10085   .2579914     8.14   0.000     1.595197    2.606504

------------------------------------------------------------------------------

Variances and covariances of random effects

------------------------------------------------------------------------------

***level 2 (plate)

    var(1): .05760287 (.05202067)

------------------------------------------------------------------------------

The following xtpoisson command will give similar results. 

xtpoisson y log_dose dose, re i(plate) quad(18)
The two procedures use similar algorithms. Like xtreg and xtlogistic, xtpoisson is limited to models with only random-intercept, while gllamm is more versatile. 
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