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Lab 8: Introduction to WinBUGS 
 

Goals:  1. Introduce the concepts of Bayesian data analysis. 

  2. Learn the basic syntax of WinBUGS. 

  3. Learn the basics of using WinBUGS in a simple example. 

 

Next lab we will look at two case studies: (1) NMMAPS and (2) Hospital ranking data. 

 

PART I WinBUGS and Bayesian Analysis 

 

A. What is WinBUGS 

 

BUGS = Bayesian Inference Using Gibbs Sampling 

 

Not using Windows? Try 

OpenBUGS: http://mathstat.helsinki.fi/openbugs 

JAGS: http://www-fis.iarc.fr/~martyn/software/jags 

 

• WinBUGS is a Bayesian analysis software that uses Markov Chain Monte 
Carlo (MCMC) to fit statistical models. 

• WinBUGS can be used in statistical problems as simple as estimating 
means and variances or as complicated as fitting multilevel models, 

measurement error models, and missing data models. 

• WinBUGS fits fixed-effect and multilevel models using the Bayesian 
approach.  Stata fits fixed effects and limited multilevel models using 

maximum likelihood or generalized least squares.   
• Often results from WinBUGS and Stata are very similar. 

 

B. What is Bayesian Analysis 

 

Consider the following conditional probability statement: 

 

)(

)()|(
)|(

dataP

PdataP
dataP

θθ
θ = , 

where θ is the unobserved parameter that we want to learn about using the observed data.  

 

There are three important components: 

(1) P( data | θ ): 

• This represents the “model” part in a statistical analysis.  

• It describes our assumptions that the observed data were generated 
based on the parameter θ.  

• E.g. θ is the mean of a Normal distribution with variance 1.  

• E.g. θ is the coefficients in a linear regression model where data here 
include both the response (Y) and covariates (X). 

(2) P(θ):  
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• This represents “prior” assumption of θ. 

• It describes our prior belief of θ, typically using a distribution. 

• E.g. Assume θ ~ Normal (0, 20) · I θ>0, so θ is strictly positive. 

• E.g. Assume θ ~ Normal (0, 10^5), a pretty non-informative prior. 

• Choosing appropriate priors can be tricky and we will see many 
examples that are typically used in standard statistical analyses. 

 

(3) P ( θ | data):  

• This represents the “posterior” distribution of θ. 

• It describes all the information on θ after combining prior knowledge 
on θ and what our data informed us about θ. 

• Since P( θ | data) is a probability distribution, statistical inference is 
made by examining the different characteristics of this distribution. 

• E.g. the posterior mean, median or mode can be our estimate of θ. 

• E.g. the variance and middle 95% of the posterior distribution can tell 
us about the uncertainty in our estimates. 

 

Therefore, Bayesian data analyses typically involve the following ingredients: 

 

(1) Specify a model that specifies the relation between the unknown parameters 
and the observed data. 

(2) Specify prior distributions for the unknown parameters. 
(3) Obtain the posterior distributions. 
(4) Make inference using the posterior distributions. 

 

C. Why Do Bayesian Analysis 

 

Here are some advantages of the Bayesian approach: 

  

• All uncertainty in parameter estimation is included in the final inference. (E.g. 
Bayesian versus empirical Bayes estimates of random effects). 

• Estimation (particularly the uncertainty) for any function of the parameters can be 
easily obtained by examining the corresponding posterior distribution. 

• Prior information can be easily integrated. 

• Does not rely on large-sample asymptotic theory. 
 

Here are some elements that make Bayesian analysis more complex: 

 

• Need to specify prior distributions. 

• Only in very simple models can P ( θ | data) be derived explicitly. 
� Solution: Monte Carlo sampling!!! 

 

Markov Chain Monte Carlo?  
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• Since we specify P( data | θ ) and P(θ), the only element that prevents us from 
obtaining P( θ | data ) is the  marginal distribution P (data).   

• However, P (data) is often difficult to evaluate, especially when the number of 
parameters is large. 

• Note that P (data) does NOT depend on the parameter θ. Many methods have 
been developed to draw samples from P( θ | data ) and WinBUGS does this for us 

automatically!!! 

• Given samples from P( θ | data ), we can calculate the desired statistics such as the 
mean or variance to make statistical inference. The precision of how our samples 

resemble the true posterior distribution is only limited by the number of draws we 

make. 

 

 

PART II WinBUGS in Action 

 

 

A. How to install WinBUGS 

  

(1) Download the .exe. file from: http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml 
(2) Find the file WinBUGS14.exe where WinBUGS is installed. You may want to 

create a shortcut. 

(3) Follow the instructions in the patch file and install the patch in WinBUGS 
(4) Fill out a registration form to obtain a key through email. 
(5) Update the key in WinBUGS. 

 

 

B. A Simple Demonstration: Inference for Two Normal Means. 

 

Data:  two samples of size 20 from two independent Normal distributions with unknown 

variances.   

 

Data: X = ( x1, x2, …, x20) and Y = ( y1, y2, …, y20) 

 

(1)  Statistical model: 
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(2) Prior distributions:   

     In our model, we have four unknowns so four prior distributions are needed. 
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• The Normal distributions for µ’s are flat and cover a large range of values. 
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• We set the inverse of the variance to have a gamma prior distribution since 
gamma distribution only takes positive values. Gamma (0.001,.001) has 

extremely large standard deviation.  

• We pick the above prior distributions such that they are non-informative in that 
the data will easily dominate the posterior distributions.  

 

A typical WinBUGS program include three sections: Model, Data, and Initial Values. 

 

Model: Translating our statistical model into a WinBUGS program: 

 
model{  

 for (i in 1:20){ 

  x[i] ~ dnorm (mu[1], prec[1]) 

  y[i] ~ dnorm (mu[2], prec[2]) 

 } 

 

 mu[1] ~ dnorm (0, 0.0001) 

 mu[2] ~ dnorm (0, 0.0001) 

 prec[1] ~ dgamma (0.001, 0.001) 

 prec[2] ~ dgamma (0.001, 0.001) 

 

 s2[1] <- 1/prec[1] 

 s2[2] <- 1/prec[2] 

} 

 

• “model { … }” specifies the statistical model we are fitting. 

• “for (i in 1:20) { … }” is short-hand for writing the two statements in {…} 
20 times. 

• The square brackets allow us to index a vector of values. They are 
equivalent to the subscripts in our previous model. 

• WinBUGS uses “precision” as a parameter in specifying a Normal 
distribution instead of variance!!! 

o precision = 1/variance 
o dnorm (0, 0.0001) is the same as a Normal distribution with mean 

0 and variance 1/0.0001 = 100
2
. 

• The last two lines tell WinBUGS to also keep track of the variances. 
 

Our data in WinBUGS format: 
 

list(x = c(6.62, 6.71, 5.07, 4.39, 5.68, 3.94, 5.83, 2.31, 3.60, 4.64, 

1.79, 3.12, 3.46, 8.25, 5.49, 6.49, 2.65, 9.14, 5.31, 6.58), y = 

c(9.06, 7.00, 8.59, 8.70, 8.64, 8.03, 9.27, 6.01, 7.92, 6.20, 6.39, 

9.10, 7.63, 6.75, 8.88, 8.44, 8.95, 5.66, 9.78, 8.09)) 

 

Often we also need to give initial values for out parameters:  

 
list( mu=c(0,0), prec=c(1,1)) 

 

 

 

Model, P( θ | data ) 

Priors, P( θ ) 

Convert variances to precision 
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Run the Analysis in WinBUGS 

 

A. Load model, data, and initial values: 

 

1. Open a new document in WinBUGS and paste all three parts (model, data, initial 
values) on it.  

2. Save the file as an .odc. 
3. From the top panel: open Model � Specification. A dialogue box will open. 
4. Double-click (highlight) the word “model” in your file and click “check model” 

on the dialogue box.  

5. Look at the bottom left-hand corner for “model is syntactically correct.” 
6. Highlight the word “list” for the data section and click “load data” in the dialogue 

box. Look at the bottom left-hand corner for “data loaded.” 

7. Click “compile” and look for “model compiled.” 
8. Highlight the word “list” for the initial value section and click “load inits” in the 

dialogue. Look for “model is initialized.” 

9. [Optional] If you did no initialize all parameters, click “gen inits” in the dialogue 
box. 

 

B. Run Sampler: 

 

1. Open the “Sample Monitor Tool” window: Menu � Inference � Sample, 
2. Type the parameters we are interested in the “node” box and click “set.” In this 

example we will track both “mu” and “s2.” 

3. Open the “Update Tool” window: Menu � Model � Update. 
4. In the Update Too box, type in the number of posterior samples you want in the 

“updates” box. E.g. 20000. 

5. Click “Update” and watch it runs in the iteration box! 
 

C. Posterior Inference: 

1. In the “Sample Monitor Tool” select “mu” from the drop-down box in “node.” 
2. Select the number of initial samples that we want to drop in the “beg” box. This is 

also known as “burn-in.” Let’s choose 2000 here. 

3. Select the “jth” number of iteration you want to keep in the “thin” box. For 
example, if you pick 10, then only the every 10

th
 sample from the 2000

th
~10000

th
 

iterations will be used for posterior inference. Let’s choose 10 here. 

  

Some Posterior Inference: 

 

History Show sampled value at each iteration. Look for “chains” that show no particular 

patter and low auto-correlation.  
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mu[1]

iteration

2000 4000 6000 8000

    3.0

    4.0

    5.0

    6.0

    7.0

 
 

mu[2]

iteration

2000 4000 6000 8000

    6.5

    7.0

    7.5

    8.0

    8.5

    9.0

 
s2[1]

iteration

2000 4000 6000 8000

    0.0

    5.0

   10.0

   15.0

 
s2[2]

iteration

2000 4000 6000 8000

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

 
 

Density: Plot the density estimates of the parameters. 

 
mu[2] sample: 800

    6.0     7.0     8.0

    0.0

    0.5

    1.0

    1.5

    2.0

mu[2] sample: 800

    6.0     7.0     8.0

    0.0

    0.5

    1.0

    1.5

    2.0

 
s2[1] sample: 800

    0.0     5.0    10.0

    0.0

    0.1

    0.2

    0.3

    0.4

 

s2[2] sample: 800

    0.0     2.0     4.0

    0.0

   0.25

    0.5

   0.75

    1.0
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Stats: Show statistics of the posterior distribution based on the samples. 

 
node  mean  sd  MC error 2.5% median 97.5% start sample 

 mu[1] 5.051 0.4654 0.01625 4.134 5.051 5.99 2000 800 
 mu[2] 7.957 0.2765 0.01001 7.429 7.972 8.498 2000 800 
 

node  mean  sd  MC error 2.5% median 97.5% start sample 
 s2[1] 4.312 1.605 0.04095 2.148 3.944 8.394 2000 800 
 s2[2] 1.662 0.5761 0.01988 0.8416 1.549 3.122 2000 800 
 

Parameter Truth 
Posterior 

mean 

95% Posterior 

Interval 
MLE 

95% Confidence 

Interval 

µ1 5 5.05 (4.13, 5.99) 5.05 (4.14, 5.96) 

µ2 8 7.96 (7.43, 8.50) 7.95 (7.38, 8.52) 

σ
2
1 4 4.32 (2.15, 8.39) 3.79 (2.19, 8.08) 

σ
2
2 1 1.66 (0.84, 3.12) 1.48 (0.85, 3.15) 

 

• The point estimates and 95% posterior interval for the 2 means are very similar to 
the MLE estimates and its large sample 95% confidence interval. 

• The point estimates for the variances are a bit different. Why? 
 

Some Additional Analyses 

 

Perhaps we are also interested in: 

1) The difference of the population means. 
2) The ratio of the two variance components. 

 

In standard non-Bayesian analysis, the confidence intervals for theses estimates can be 

quite tricky. However, in a Bayesian analysis we simply add the following two lines in 

the “model” section of our WinBUGS code.  

  
mu.diff <- mu[1] – mu[2] 

var.ratio <- s2[1]/s2[2] 

 

 
mu.diff sample: 10800

   -6.0    -4.0    -2.0

    0.0

    0.2

    0.4

    0.6

    0.8

var.ratio sample: 10000

    0.0     5.0    10.0    15.0

    0.0

    0.1

    0.2

    0.3

    0.4

 
node  mean  sd  MC error  2.5% median 97.5% start sample 

 mu.diff -2.909 0.5467 0.004712  -3.965 -2.913 -1.811 9201 10800 
 
  node  mean  sd  MC error  2.5% median 97.5% start sample 

 var.ratio 2.847 1.442 0.01527  1.013 2.555 6.47 10001 10000 

 

We conclude the difference between µ1 and µ2 is -2.91 with a 95% posterior interval of (-

3.96 ~ -1.81) and the ratio between σ
2
1 and σ

2
2 has a posterior median of 2.55 (95% PI: 

1.01~6.47). Therefore we found evidence that µ1 less then µ2 and σ
2
1 is greater than σ

2
2. 
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Stata has a package that allows you to run WinBUGS in Stata (link below). It still 

requires you to write WinBUGS program but you can analyze the posterior samples in 

Stata. R has similar libraries (BRugs and R2WinBUGS) that call WinBUGS or 

OpenBUGS. JAGS is another MCMC software that you can call from R and is not based 

on BUGS. 

 

  

Run WinBUGS in Stata: 

 
http://www2.le.ac.uk/departments/health-sciences/extranet/BGE/geneticepidemiology/gedownload/information/ 

 


