Lab 5: GROWTH CURVE MODELING

(from pages 78-87 and 91-94 of the old textbook edition and starting on page 210 of the new edition)

Data: Weight gain in Asian children in Britain.

Variables

- id: child identifier
- weight: weight in Kg
- age: age in years
- gender: child's gender (1: male, 2: female)

Goal: Use xtmixed and gllamm to investigate how children grow as they age

```
. use http://www.stata-press.com/data/mlmus/asian, clear
. label def g 1 "boy" 2 "girl"
. label values gender g
```


Exploratory Data Analysis

How many children do we have in the study and how many times did they have their weight measured?
Note that we have to generate a time variable because in order to use the xtdes command, STATA needs the time variable to be an integer and age is reported in (noninteger) years.

```
. by id: gen time=_n
. xtset id time
    panel variable: id (unbalanced)
        time variable: time, 1 to 5
            delta: 1 unit
. xtdes
        id:45, 258, .., 4975 n = 68
        time: 1, 2, ... 5 T = 5
        Delta(time) = 1; (5-1)+1 = 5
        (id*time uniquely identifies each observation)
Distribution of T_i: min 
```


We have 68 children, with a maximum of 5 observations per child (3 children) and minimum of 1 observation per child (4 children). The most common number of observations per child (the mode) is 3 , since 27 children have 3 observations.

For the analysis, we'll be looking at how weight changes as the children age. It is important to understand the typical ages at which the children have their weight measured.

```
. sum age
\begin{tabular}{cccccr} 
Variable | & Obs & Mean & Std. Dev. & Min & Max \\
age | & 198 & 1.080552 & .787069 & .1149897 & 2.546201
\end{tabular}
. hist age, xtitle(age (years))
```


Weights are generally measured on children at ages 0.2 years (10 weeks), and at 0.7 years (8 months), 1 year, and 2.25 years (27 months)

Now let's take a look how weight changes over time for each child, separately for boys and girls.

```
. sort id age
. graph twoway (line weight age, connect(ascending)), by(gender)
xtitle(Age in years) ytitle(Weight in Kg)
```


What kind of model should we build?

The childrens' growth appears to be non-linear in relation to time. Both boys and girls grow more quickly at first and then they continue to grow, but at a slower rate. Since the relationship between weight and age is non-linear, we will include a quadratic term for age in our model. Note that at the first weight measurement, it appears that each child has his or her own starting weight and tends to be at the same weight ranking compared to the other children throughout his or her growth trajectory. We could consider these starting weights to be an approximately normally distributed random variable (around the mean starting weight). We will build a random intercept into our initial model.

xtmixed

Quadratic growth with random intercept model where $U_{1 i}$ is the random intercept for child i :

$$
\begin{aligned}
& \text { weight }_{i j} \mid \text { age }_{i j}, U_{1 i}=\beta_{1}+\beta_{2} a g e_{i j}+\beta_{3} a g e_{i j}^{2}+U_{1 i}+\varepsilon_{i j} \\
& \\
& =\left(\beta_{1}+U_{1 i}\right)+\beta_{2} a g e_{i j}+\beta_{3} a g e_{i j}^{2}+\varepsilon_{i j} \\
& U_{1 i} \sim N\left(0, \tau^{2}\right) \\
& \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Both of the age terms in our model are statistically significant. (If the age ${ }^{2}$ term had not been statistically significant we could have included only a linear term for age in our model.) The estimated standard deviation of the random intercept is 0.918 and the estimated standard deviation of the error is 0.734 .

Quadratic growth with random intercept $U_{1 i}$ and random slope $U_{2 i}$ for child \boldsymbol{i} :

$$
\begin{aligned}
& \text { weight }_{i j} \mid \text { age }_{i j}, U_{1 i}, U_{2 i}=\beta_{1}+\beta_{2} a g e_{i j}+\beta_{3} a g e_{i j}^{2}+U_{1 i}+U_{2 i} a g e_{i j}+\varepsilon_{i j} \\
& \quad=\left(\beta_{1}+U_{1 i}\right)+\left(\beta_{2}+U_{2 i}\right) a g e_{i j}+\beta_{3} a g e_{i j}^{2}+\varepsilon_{i j} \\
& \binom{U_{1 i}}{U_{2 i}} \sim M V N\left(\binom{0}{0},\left(\begin{array}{ll}
\tau_{11} & \tau_{12} \\
\tau_{21} & \tau_{22}
\end{array}\right)\right) \\
& \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

By including a random slope on age, we allow children to have different overall rates of growth.

The standard deviation of the random coefficient on age is 0.50 ($95 \% \mathrm{CI}: 0.358,0.710$) which doesn't include 0 , so we have evidence that there is heterogeneity between children in growth rates. Also, the estimated standard deviation of the error term has decreased from 0.73 to 0.57 indicating better fit of the model.

What if there is a systematic different in growth between boys and girls?
Quadratic growth with random intercept $U_{1 i}$ and random slope $U_{2 i}$ for child \boldsymbol{i} that includes a child-level covariate, an indicator of gender:

$$
\begin{aligned}
& \text { weight }_{i j} \mid \text { age }_{i j}, \text { girl }_{i j}, U_{1 i}, U_{2 i}=\left(\beta_{1}+U_{1 i}\right)+\left(\beta_{2}+U_{2 i}\right) a g e_{i j}+\beta_{3} a g e_{i j}^{2}+\beta_{4} g i r l_{i j}+\varepsilon_{i j} \\
& \binom{U_{1 i}}{U_{2 i}} \sim \operatorname{MVN}\left(\binom{0}{0},\left(\begin{array}{ll}
\tau_{11} & \tau_{12} \\
\tau_{21} & \tau_{22}
\end{array}\right)\right) \\
& \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

```
. ** including a child-level covariate **
. gen girl = gender - 1
. xtmixed weight age age2 girl || id: age , cov(unstr) mle
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68
Obs per group: min = 1
    lr
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline weight & Coef. & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline age & 7.697967 & . 2382121 & 32.32 & 0.000 & 7.23108 & 8.164855 \\
\hline age2 & -1.657843 & . 0880529 & -18.83 & 0.000 & -1.830423 & -1.485262 \\
\hline girl & -. 5960093 & . 1963689 & -3.04 & 0.002 & -. 9808853 & -. 2111332 \\
\hline _cons & 3.794769 & . 1655053 & 22.93 & 0.000 & 3.470385 & 4.119153 \\
\hline
\end{tabular}
```



```
Note: LR test is conservative and provided only for reference
```


Interpretation of the coefficient on girl:

At any given age, we estimate that a boy is 0.60 kg heavier than he would be if he were a girl. In other words, at any given age, we estimate that the typical $\left(U_{1 i}=0\right)$ boy will be 0.60 kg heavier than the typical $\left(U_{1 i}=0\right)$ girl.

gllamm

When modeling random effects (beyond a random intercept) in gllamm, we need to use the eq command to specify the 'equation' for each random effect. The 'equation' is the variable or constant by which we multiply the random effect. For example, if we were creating the equation for a random intercept we would multiply the random effect by 1 . If we were creating the equation for a random coefficient on the variable x we would multiply the random effect by variable x .

We include the name of each equation in the eqs option of gllamm.

```
. ** quadratic growth with random intercept **
. gen cons=1
. eq inter: cons
. gllamm weight age age2, i(id) eqs(inter) adapt
number of level 1 units = 198
number of level 2 units = 68
gllamm model
log likelihood = -276.83266
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline weight & Coef. & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline age & 7.817871 & . 2899873 & 26.96 & 0.000 & 7.249507 & 8.386236 \\
\hline age2 & -1.705589 & . 1086957 & -15.69 & 0.000 & -1.918629 & -1.49255 \\
\hline _cons & 3.432893 & . 1811779 & 18.95 & 0.000 & 3.07779 & 3.787995 \\
\hline
\end{tabular}
Variance at level 1
    .53966034 (.06647545)
Variances and covariances of random effects
***level 2 (id)
    var(1): . 84334423 (.17887769)
. ** quadratic growth with random intercept and random slope **
. eq slope: age
```

The option $n r f(2)$ specifies that we now have two random effects (intercept and slope). The ip (m) nip(15) specifies that we are using a spherical integration rule of degree 15 (don't need to worry about this - just know that it speeds up the estimation).

```
. gllamm weight age age2, i(id) nrf(2) eqs(inter slope) ip(m) nip(15) adapt
number of level 1 units = 198
number of level 2 units = 68
Condition Number = 8.9386847
gllamm model
log likelihood = -258.07784
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline weight & Coef. & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline age & 7.703998 & .24026 & 32.07 & 0.000 & 7.233097 & 8.174899 \\
\hline age2 & -1.660465 & . 0890109 & -18.65 & 0.000 & -1.834923 & -1.486007 \\
\hline _cons & 3.494512 & . 1376254 & 25.39 & 0.000 & 3.224771 & 3.764253 \\
\hline
\end{tabular}
```

```
Variance at level 1
    .3315169(.05826676)
Variances and covariances of random effects
------------------------------------------------------------------------------------------
***level 2 (id)
    var(1): .40444011 (.16452483)
    cov(2,1): .0880873 (.08802562) cor(2,1): . 27478078
    var(2): . 25409706 (.08865135)
```

If you compare the results from xtmixed and gllamm, you'll see that they are similar. You can get the gllamm results to be even closer to the results from xtmixed if you increase nip().

Predicting the trajectories for each child
 - xtmixed

Get the empirical Bayes estimates of the random intercepts and random slopes

```
. * re-run the xtmixed including the child-level covariate
. xtmixed weight age age2 girl || id: age , cov(unstr) mle
. predict traj, fitted
. sort id age
* plot only the predicted *
. graph twoway (line traj age, connect(ascending)), by(gender)
xtitle(Age in years)
```


In the above plot you can see how including a quadratic term for age allowed the relationship between age and predicted weight to be nonlinear since the trajectories are not straight lines and tend to have a steeper rise at earlier ages and then rise more slowly at older ages. The fixed effect for gender allowed for a systematic difference in predicted weight for boys and girls. The trajectories for boys tend to be higher than for girls of the same age. The random intercept is reflected in the different 'starting point' for each of the trajectories. We also see the random coefficient on age reflected by the different rates of growth for different children.

```
* plot the predicted and the observed *
. graph twoway (line traj age, connect(ascending)) (line weight age,
connect(ascending) clpatt(dash)), by(gender) xtitle(Age in years)
ytitle(Weight in Kg) legend(order(1 "Predicted" 2 "Observed"))
```


The model appears to fit the data adequately based on a comparison of the fitted trajectories to the observed trajectories.

- gllamm

Get the empirical Bayes estimates of the random intercepts and random slopes

```
. * re-run the gllamm including the child-level covariate
. gllamm weight age age2, i(id) nrf(2) eqs(inter slope) ip(m) nip(15)
adapt
. gllapred traj, linpred
. graph twoway (line traj age, connect(ascending)) (line weight age,
connect(ascending) clpatt(dash)), by(gender) xtitle(Age in years)
ytitle(Weight in Kg) legend(order(1 "Predicted" 2 "Observed"))
```

This will produce a similar graph to the one we saw for xtmixed.

I'm not convinced that the third model (including a random intercept, random slope on age and a fixed effect for girl) is the 'best' of the three models. Are there model selection criteria I can use?

Yes! You can look at AIC and BIC for either xtmixed or gllamm. According to the AIC or BIC criterion, the best fitting model is the model that has the smallest value of AIC or BIC, respectively.

```
. ** quadratic growth with random intercept **
. quietly xtmixed weight age age2 || id:, mle
. estat ic
```


. ** quadratic growth with random intercept and random slope **
. quietly xtmixed weight age age2 || id: age, cov(unstr) mle
. estat ic

Model \|	Obs	$11($ null)	11 (model)	df	AIC	BIC
I	198	.	-258.0778	7	530.1557	553.1736

 Note: N=Obs used in calculating BIC; see [R] BIC note
 . ** including a child-level covariate **
. quietly xtmixed weight age age2 girl || id: age , cov(unstr) mle
. estat ic

Model \|	Obs	$11(n u l l)$	$l l(m o d e l)$	df	AIC	BIC
।	198	-	-253.8669	8	523.7338	550.04
Note: N=Obs used in calculating BIC; see [R] BIC note						

The third models wins in terms of both AIC and BIC.
The code to do the same thing is gllamm is very similar (check out the .do file for this lab).

