Lecture 11
Applications of Multi-level Models to Disease Mapping
Outline

• Multi-level models for spatially correlated data
 – Socio-economic and dietary factors of pellagra deaths in southern US

• Multi-level models for geographic correlation studies
 – The Scottish Lip Cancer Data
Data characteristics

• Data for disease mapping consists of disease counts and exposure levels in small adjacent geographical area.

• The analysis of disease rates or counts for small areas often involves a trade-off between statistical stability of the estimates and geographic precision.
An example of multi-level data in spatial epidemiology

• We consider approximately 800 counties clustered within 9 states in southern US
• For each county, data consists of observed and expected number of pellagra deaths
• For each county, we also have several county-specific socio-economic characteristics and dietary factors
 – % acres in cotton
 – % farms under 20 acres
 – dairy cows per capita
 – Access to mental hospital
 – % afro-american
 – % single women
Definition of Standardized Mortality Ratio

- Y_i is the observed number of deaths in area i
- E_i is the expected number of deaths in area i
- The “raw” Standardized Mortality Ratio is so defined:

$$SMR_i = \left(\frac{Y_i}{E_i}\right) \times 1000$$
Definition of the expected number of deaths

- The expected number of deaths in area i can be calculated as follows:

$$E_i = \sum_j p_j n_{ij}$$

where

- j is the population stratum generally defined by age \times gender \times race
- p_j is observed frequency of death in the reference population
- n_{ij} is the number of people at risk in area i in stratum j
Definition of Pellagra

• Disease caused by a deficient diet or failure of the body to absorb B complex vitamins or an amino acid.

• Common in certain parts of the world (in people consuming large quantities of corn), the disease is characterized by scaly skin sores, diarrhea, mucosal changes, and mental symptoms (especially a schizophrenia-like dementia). It may develop after gastrointestinal diseases or alcoholism.
Crude Standardized Mortality Ratio (Observed/Expected) of Pellagra Deaths in Southern USA in 1930 (Courtesy of Dr Harry Marks)
Scientific Questions

• Which social, economical, behavioral, or dietary factors best explain spatial distribution of pellagra in southern US?
• Which of the above factors is more important for explaining the history of pellagra incidence in the US?
• To which extent, state-laws have affected pellagra?
Statistical Challenges

• For small areas SMR are very instable and maps of SMR can be misleading
 – Spatial smoothing

• SMR are spatially correlated
 – Spatially correlated random effects

• Covariates available at different level of spatial aggregation (county, State)
 – Multi-level regression structure
Spatial Smoothing

• Spatial smoothing can reduce the random noise in maps of observable data (or disease rates)
• Trade-off between geographic resolution and the variability of the mapped estimates
• Spatial smoothing as method for reducing random noise and highlight meaningful geographic patterns in the underlying risk
Shrinkage Estimation

• Shrinkage methods can be used to take into account instable SMR for the small areas

• Idea is that:
 – *smoothed estimate for each area “borrow strength” (precision) from data in other areas, by an amount depending on the precision of the raw estimate of each area*
Shrinkage Estimation

• Estimated rate in area A is adjusted by combining knowledge about:
 – Observed rate in that area;
 – Average rate in surrounding areas

• The two rates are combined by taking a form of weighted average, with weights depending on the population size in area A
Shrinkage Estimation

• When population in area A is large
 – Statistical error associated with observed rate is small
 – High credibility (weight) is given to observed estimate
 – Smoothed rate is close to observed rate

• When population in area A is small
 – Statistical error associated with observed rate is large
 – Little credibility (low weight) is given to observed estimate
 – Smoothed rate is “shrunk” towards rate mean in surrounding areas
A Multi-level Model for Spatial Smoothing of SMR

\[Y_i \mid \mu_i \sim \text{Poisson}(\mu_i) \]

\[\log \mu_i = \log E_i + b_i \]

\[b_i \mid b_j \neq i \sim N \left(\frac{\sum_{j \neq i} w_{ij} b_j}{\sum_{j \neq i} w_{ij}}, \sigma^2 \frac{1}{\sum_{j \neq i} w_{ij}} \right) \]

where:

- \(b_i \) are area-specific random effects with a spatially correlated random effect distribution

- \(w_{ij} \) are weights defining which regions \(j \) are neighbors to region \(i \) (by convention \(w_{ii} = 0 \), for all \(i \))

- \(\sigma^2 \) is the variance controlling how similar the \(b_i \) is to its neighbors
Raw and Smoothed Standardized Mortality Rates

- Y_i are observed disease counts in area i
- E_i are expected disease counts in area i
- The raw and smoothed standardized mortality ratio (SMR_i and \hat{SMR}_i) are so defined:

 $$SMR_i = \frac{Y_i}{E_i}$$

 $$\hat{SMR}_i = \frac{\hat{Y}_i}{E_i}$$

- In areas with abundant data:

 $$\hat{SMR}_i \approx SMR_i$$

- In areas with sparse data:

 $$\hat{SMR}_i \approx \text{weighted average of the SMR in the adjacent counties}$$
SMR of pellagra deaths for 800 southern US counties in 1930

Crude SMR

Smoothed SMR
Multi-level Models for Geographical Correlation Studies

• Geographical correlation studies seek to describe the relationship between the geographical variation in disease and the variation in exposure
A Multilevel model for disease counts

• \(Y_{is} \) are observed disease counts in county \(i \) within state \(s \)

• \(E_{is} \) are expected disease counts in county \(i \) within state \(s \)

• **Stage I: County-level, within state model**

 \[Y_{is} \mid \mu_{is} \sim \text{Poisson}(\mu_{is}) \]

 \[
 \log \mu_{is} = \log E_{is} + \beta_{1s}(\text{cot}_{is} - \overline{\text{cot}}) + \beta_{2s}(\text{milk}_{is} - \overline{\text{milk}}) + b_i
 \]

 \(b_i \sim \text{spatially correlated random effects} \)

• **Stage II: Between-states model**

 \[
 \beta_{1s} = \gamma_{11} + \gamma_{12}\text{state-taxes}_s + N(0, \sigma_1^2)
 \]

 \[
 \beta_{2s} = \gamma_{21} + \gamma_{22}\text{state-taxes}_s + N(0, \sigma_2^2)
 \]

 where:

• \(\beta_{1s} \) and \(\beta_{2s} \) are county-specific log-relative rates

• \(\gamma_{11} \) is the overall log-relative rate of pellagra mortality for the counties with average
Example: Scottish Lip Cancer Data

(Clayton and Kaldor 1987 Biometrics)

- Observed and expected cases of lip cancer in 56 local government district in Scotland over the period 1975-1980
- Percentage of the population employed in agriculture, fishing, and forestry as a measure of exposure to sunlight, a potential risk factor for lip cancer
Data Set

• **county**: county identifier 1:59
• **o**: observed number of lip cancer cases
• **e**: expected number of lip cancer cases
• **x**: percentage of the population working in agriculture, fishing or forestry

Note: the expected number of lip cancer cases for a county is based on the age-specific lip cancer rates for the whole Scotland and the age-distribution of the counties.
Crude standardized Mortality rates for each district, Note that there is a tendency for areas to cluster, with a noticeable grouping of areas with SMR> 200 to the North of the country
Table 6.2: Observed and expected numbers of lip cancer cases and various SMR estimates (in percentages) for Scottish counties

<table>
<thead>
<tr>
<th>County</th>
<th>#</th>
<th>Obs</th>
<th>Exp</th>
<th>Crude SMR</th>
<th>Predicted SMRs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Norm.</td>
</tr>
<tr>
<td>Skye. Lochalsh</td>
<td>1</td>
<td>9</td>
<td>1.4</td>
<td>652.2</td>
<td>470.7</td>
</tr>
<tr>
<td>Banf. Buchan</td>
<td>2</td>
<td>39</td>
<td>8.7</td>
<td>450.3</td>
<td>421.8</td>
</tr>
<tr>
<td>Caithness</td>
<td>3</td>
<td>11</td>
<td>3.0</td>
<td>361.8</td>
<td>309.4</td>
</tr>
<tr>
<td>Berwickshire</td>
<td>4</td>
<td>9</td>
<td>2.5</td>
<td>355.7</td>
<td>295.2</td>
</tr>
<tr>
<td>Ross. Cromarty</td>
<td>5</td>
<td>15</td>
<td>4.3</td>
<td>352.1</td>
<td>308.5</td>
</tr>
<tr>
<td>Orkney</td>
<td>6</td>
<td>8</td>
<td>2.4</td>
<td>333.3</td>
<td>272.0</td>
</tr>
<tr>
<td>Moray</td>
<td>7</td>
<td>26</td>
<td>8.1</td>
<td>320.6</td>
<td>299.9</td>
</tr>
<tr>
<td>Shetland</td>
<td>8</td>
<td>7</td>
<td>2.3</td>
<td>304.3</td>
<td>247.8</td>
</tr>
<tr>
<td>Lochaber</td>
<td>9</td>
<td>6</td>
<td>2.0</td>
<td>303.0</td>
<td>239.0</td>
</tr>
<tr>
<td>Gordon</td>
<td>10</td>
<td>20</td>
<td>6.6</td>
<td>301.7</td>
<td>279.1</td>
</tr>
<tr>
<td>W. Isles</td>
<td>11</td>
<td>13</td>
<td>4.4</td>
<td>295.5</td>
<td>262.5</td>
</tr>
<tr>
<td>Sutherland</td>
<td>12</td>
<td>5</td>
<td>1.8</td>
<td>279.3</td>
<td>219.2</td>
</tr>
</tbody>
</table>
Poisson model with random intercept

\[y_j \sim \text{Poisson}(m_j) \]

\[\log m_j = \log e_j + b_1 + V_j \]

\[V_j \sim N(0, \sigma^2) \quad \text{Unobserved heterogeneity between the counties} \]

\[\log(\text{SMR}_j) = b_1 + V_j \]

\[\text{SMR}_j = m_j / e_j \]

We include an offset to that \(\beta_1 + V_j \) can be interpreted as the county-specific log-SMR
Poisson model with random intercept and a covariate

\[y_j \sim \text{Poisson}(m_j) \]

\[\log m_j = \log e_j + b_1 + b_2 x_j + V_j \]

\[V_j \sim N(0, \tau^2) \]

\[\log(\text{SMR}_j) = b_1 + V_j \]

\[\text{SMR}_j = m_j / e_j \]
Parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th></th>
<th>Estimate</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>0.08</td>
<td>0.12</td>
<td>-0.49 (SE = 0.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slope</td>
<td>0.07</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance of the random effect</td>
<td>0.58</td>
<td>0.15</td>
<td>0.35 (SE = 0.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MLE obtained by using gllamm
Disease Mapping

Crude SMR

Smoothed SMR

Legend:

- (4) < 25.0
- (10) 25.0 - 50.0
- (21) 50.0 - 150.0
- (6) 150.0 - 200.0
- (2) >= 400.0

- (1) < 25.0
- (7) 25.0 - 50.0
- (28) 50.0 - 150.0
- (7) 150.0 - 200.0
- (6) 200.0 - 300.0
- (5) 300.0 - 400.0
- (2) >= 400.0

Scale: 200.0 km
The $y=x$ line has been superimposed as well as the lines $x=108$ and $y=108$ representing the SMR in percent when the random effect is equal to zero. Shrinkage is apparent, since counties with particularly high crude SMRs lie below the $y=x$ line (have predictions lower than the crude SMR) and counties with particularly low crude SMR lie above the $y=x$ line.

Figure 6.3: Empirical Bayes SMRs versus crude SMRs
Discussion

• In multi-level models is important to explore the sensitivity of the results to the assumptions inherent with the distribution of the random effects

• Specially for spatially correlated data the assumption of global smoothing, where the area-specific random effects are shrunk toward and overall mean might not be appropriate
Discussion

• Multilevel models are a natural approach to analyze data collected at different level of spatial aggregation
• Provide an easy framework to model sources of variability (within county, across counties, within regions etc.)
• Allow to incorporate covariates at the different levels to explain heterogeneity within clusters
• Allow flexibility in specifying the distribution of the random effects, which for example, can take into account spatially correlated latent variables
Key Words

- Spatial Smoothing
- Disease Mapping
- Geographical Correlation Study
- Hierarchical Poisson Regression Model
- Spatially correlated random effects
- Posterior distributions of relative risks