Lecture 11 Applications of Multi-level Models to Disease Mapping

Outline

- Multi-level models for spatially correlated data
 - Socio-economic and dietary factors of pellagra deaths in southern US
- Multi-level models for geographic correlation studies

-The Scottish Lip Cancer Data

Data characteristics

- Data for disease mapping consists of disease counts and exposure levels in small adjacent geographical area
- The analysis of disease rates or counts for small areas often involves a trade-off between statistical stability of the estimates and geographic precision

An example of multi-level data in spatial epidemiology

- We consider approximately 800 counties clustered within 9 states in southern US
- For each county, data consists of observed and expected number of pellagra deaths
- For each county, we also have several countyspecific socio-economic characteristics and dietary factors
 - % acres in cotton
 - % farms under 20 acres
 - dairy cows per capita
 - Access to mental hospital
 - % afro-american
 - % single women

Definition of Standardized Mortality Ratio

- Y_i is the observed number of deaths in area i
- E_i is the expected number of deaths in area i
- The "raw" Standardized Mortality Ratio is so defined:

 $SMR_i = (Y_i/E_i) \times 1000$

Definition of the expected number of deaths

• The expected number of deaths in area *i* can be calculated as follows:

$$E_i = \sum_j p_j n_{ij}$$

where

- j is the population stratum generally defined by age×gender×race
- p_j is observed frequency of death in the reference population
- n_{ij} is the number of people at risk in area i in stratum j

Definition of Pellagra

- Disease caused by a deficient diet or failure of the body to absorb B complex vitamins or an amino acid.
- Common in certain parts of the world (in people consuming large quantities of corn), the disease is characterized by scaly skin sores, diarrhea, mucosal changes, and mental symptoms (especially a schizophrenia-likedementia). It may develop after gastrointestinal diseases or alcoholism.

Crude Standardized Mortality Ratio (Observed/Expected) of Pellagra Deaths in Southern USA in 1930 (*Courtesy of Dr Harry Marks*)

Scientific Questions

- Which social, economical, behavioral, or dietary factors best explain spatial distribution of pellagra in southern US?
- Which of the above factors is more important for explaining the history of pellagra incidence in the US?
- To which extent, state-laws have affected pellagra?

Statistical Challenges

- For small areas SMR are very instable and maps of SMR can be misleading
 - Spatial smoothing
- SMR are spatially correlated
 - Spatially correlated random effects
- Covariates available at different level of spatial aggregation (county, State)
 - Multi-level regression structure

Spatial Smoothing

- Spatial smoothing can reduce the random noise in maps of observable data (or disease rates)
- Trade-off between geographic resolution and the variability of the mapped estimates
- Spatial smoothing as method for reducing random noise and highlight meaningful geographic patterns in the underlying risk

Shrinkage Estimation

- Shrinkage methods can be used to take into account instable SMR for the small areas
- Idea is that:
 - smoothed estimate for each area "borrow strength" (precision) from data in other areas, by an amount depending on the precision of the raw estimate of each area

Shrinkage Estimation

- Estimated rate in area A is adjusted by combining knowledge about:
 - Observed rate in that area;
 - Average rate in surrounding areas
- The two rates are combined by taking a form of weighted average, with weights depending on the population size in area *A*

Shrinkage Estimation

- When population in area A is large
 - Statistical error associated with observed rate is small
 - High credibility (weight) is given to observed estimate
 - Smoothed rate is close to observed rate
- When population in area *A* is small
 - Statistical error associated with observed rate is large
 - Little credibility (low weight) is given to observed estimate
 - Smoothed rate is "shrunk" towards rate mean in surrounding areas

$$Y_i \mid \mu_i \sim \mathbf{Poisson}(\mu_i)$$

$$\log \mu_i = \log E_i + b_i$$

$$b_i \mid b_{j \neq i} \sim N\left(\frac{\sum_{j \neq i} w_{ij} b_j}{\sum_{j \neq i} w_{ij}}, \sigma^2 \frac{1}{\sum_{j \neq i} w_{ij}}\right)$$

where:

- b_i are area-specific random effects with a spatially correlated random effect distribution
- w_{ij} are weights defining which regions j are neighbors to region i (by convention $w_{ii} = 0$, for all i)
- σ^2 is the variance controlling how similar the b_i is to its neighbors

Raw and Smoothed Standardized Mortality Rates

- Y_i are observed disease counts in area i
- E_i are expected disease counts in area i
- The raw and smoothed standardized mortality ratio $(SMR_i \text{ and } \widehat{SMR_i})$ are so defined:

$$SMR_i = rac{Y_i}{E_i}$$
 $\widehat{SMR}_i = rac{\widehat{\mu}_i}{E_i}$

• In areas with abundant data:

 $\widehat{SMR}_i \approx SMR_i$

• In areas with sparse data:

 $\widehat{SMR}_i \approx$ weighted average of the SMR in the adjacent counties

SMR of pellagra deaths for 800 southern US counties in 1930

Crude SMR

Multi-level Models for Geographical Correlation Studies

 Geographical correlation studies seek to describe the relationship between the geographical variation in disease and the variation in exposure

A Multilevel model for disease counts

- Y_{is} are observed disease counts in county *i* within state *s*
- E_{is} are expected disease counts in county *i* within state *s*
- Stage I: County-level, within state model

 $Y_{is} \mid \mu_{is} \sim ext{Poisson}(\mu_{is})$

 $\log \mu_{is} = \log E_{is} + \beta_{1s}(\cot_{is} - \overline{\cot}) + \beta_{2s}(\operatorname{\mathbf{milk}}_{is} - \overline{\operatorname{\mathbf{milk}}}) + b_i$

 $b_i \sim \text{spatially correlated random effects}$

• Stage II: Between-states model

$$\beta_{1s} = \gamma_{11} + \gamma_{12} \text{state-taxes}_s + N(0, \sigma_1^2) \beta_{2s} = \gamma_{21} + \gamma_{22} \text{state-taxes}_s + N(0, \sigma_2^2)$$

where:

- β_{1s} and β_{2s} are county-specific log-relative rates
- γ_{11} is the overall log-relative rate of pellagra mortality for the counties with average

Example: Scottish Lip Cancer Data (*Clayton and Kaldor 1987 Biometrics*)

- Observed and expected cases of lip cancer in 56 local government district in Scotland over the period 1975-1980
- Percentage of the population employed in agriculture, fishing, and forestry as a measure of exposure to sunlight, a potential risk factor for lip cancer

Data Set

- county: county identifier 1:59
- o: observed number of lip cancer cases
- e: expected number of lip cancer cases
- x: percentage of the population working in agriculture, fishing or forestry

Note: the expected number of lip cancer cases for a county is based on the age-specific lip cancer rates for the whole Scotland and the age-distribution of the counties

Crude standardized Mortality rates for each district, Note that there is a tendency for areas to cluster, with a noticeable grouping of areas with SMR> 200 to the North of the country

Table 6.2: Observed and expected numbers of lip cancer cases and various SMR estimates (in percentages) for Scottish counties

	#	Obs o_j	Exp	Crude SMR	Predicted SMRs	
County					Norm.	NPML
Skye. Lochalsh]	9	1.4	652.2	470.7	342.6
Banf. Buchan	2	39	8.7	450.3	421.8	362.4
Caithness	3	11	3.0	361.8	309.4	327.1
Berwickshire	-1	9	2.5	355.7	295.2	321.6
Ross. Cromarty	5	15	4.3	352.1	308.5	327.6
Orkney	6	8	2.4	333.3	272.0	311.1
Moray	7	26	8.1	320.6	299.9	322.2
Shetland	8	7	2.3	304.3	247.8	292.5
Lochaber	9	6	2.0	303.0	239.0	280.1
Gordon	10	20	6.6	301.7	279.1	319.9
W.]sles	11	13	4.4	295.5	262.5	315.5
Sutherland	12	5	1.8	279.3	219.2	254.3

Poisson model with random
intercept

$$y_j \sim Poisson(m_j)$$

 $\log m_j = \log e_j + b_1 + V_j$
 $V_j \sim N(0,t^2)$
 $\log(SMR_j) = b_1 + V_j$
 $SMR_j = m_j/e_j$

We include an offset to that $\beta_1 + V_j$ can be interpreted as the county-specific log-SMR

Poisson model with random intercept and a covariate $y_i \sim Poisson(m_i)$ $\log m_j = \log e_j + b_1 + b_2 x_j + V_j$ $V_i \sim N(0, t^2)$ (offset) $\log(SMR_i) = b_1 + V_i$ $SMR_i = m_i / e_i$

Parameter estimates

intercept	0.08	-0.49
	(SE = 0.12)	(SE = 0.16)
slope		0.07
		(SE = 0.01)
Variance	0.58	0.35
of the random	(SE = 0.15)	(SE = 0.1)
effect MLE obtained by using g	gllamm	

Disease Mapping

Crude SMR

Smoothed SMR

The y=x line has been superimposed as well as the lines x=108 and y=108 representing the SMR in percent when the random effect is equal to zero. Shrinkage is apparent, since counties with particularly high crude SMRs lie below the y=x line (have predictions lower than the crude SMR) and counties with particularly low crude SMR lie above the y=x line

Discussion

- In multi-level models is important to explore the sensitivity of the results to the assumptions inherent with the distribution of the random effects
- Specially for spatially correlated data the assumption of global smoothing, where the area-specific random effects are shrunk toward and overall mean might not be appropriate

Discussion

- Multilevel models are a natural approach to analyze data collected at different level of spatial aggregation
- Provide an easy framework to model sources of variability (within county, across counties, within regions etc..)
- Allow to incorporate covariates at the different levels to explain heterogeneity within clusters
- Allow flexibility in specifying the distribution of the random effects, which for example, can take into account spatially correlated latent variables

Key Words

- Spatial Smoothing
- Disease Mapping
- Geographical Correlation Study
- Hierarchical Poisson Regression Model
- Spatially correlated random effects
- Posterior distributions of relative risks