Lecture 3
Linear random intercept models

Example: Weight of Guinea Pigs

• Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ)

• The response is measures at n different times, or under n different conditions. In the guinea pigs example the time of measurement is referred to as a "within-units" factor. For the pigs n=9

• Although the pigs example considers a single treatment factor, it is straightforward to extend the situation to one where the groups are formed as the results of a factorial design (for example, if the pigs were separated into males and female and then allocated to the diet groups)
Pig Data

A) Linear model with random intercept

\[Y_{ij} = U_i + \beta_0 + \beta_1 t_j + \varepsilon_{ij} \]

\[U_i \sim N(0, \tau^2) \quad \text{Variance between} \]

\[\varepsilon_{ij} \sim N(0, \sigma^2) \quad \text{Variance within} \]

\[\rho = \frac{\tau^2}{\tau^2 + \sigma^2} \quad \text{Intraclass correlation coefficient} \]
Pigs data model 1 – OLS fit

```
. regress weight time

Source |       SS       df       MS              Number of obs =     432
-------------+------------------------------           F(  1,   430) = 5757.41
Model |  111060.882     1  111060.882           Prob > F      =  0.0000
Residual |  8294.72677   430  19.2900622           R-squared     =  0.9305
-------------+------------------------------           Adj R-squared =  0.9303
Total |  119355.609   431  276.927167           Root MSE      =   4.392

------------------------------------------------------------------------------
weight |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
 time |   6.209896   .0818409    75.88   0.000     6.049038    6.370754
  _cons |   19.35561   .4605447    42.03   0.000     18.45041    20.26081
------------------------------------------------------------------------------
```

OLS results

Pigs data model 1 – IND fit

```
. xtreg weight time, pa i(Id) corr(ind)

GEE population-averaged model                         Number of obs      =       432
Group variable:                         Id      Number of groups   =        48
Link:                             identity      Obs per group: min =         9
Family:                           Gaussian                     avg =       9.0
Correlation:                   independent                     max =         9
Wald chi2(1)       =   5784.19
Scale parameter:                  19.20076      Prob > chi2        =    0.0000
Pearson chi2(432):                 8294.73      Deviance           =   8294.73
Dispersion (Pearson):              19.20076      Dispersion         =  19.20076

------------------------------------------------------------------------------
weight |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  time |   6.209896   .0816513    76.05   0.000     6.049038    6.369754
  _cons |   19.35561   .4594773    42.13   0.000     18.45041    20.26081
------------------------------------------------------------------------------
```

Independence correlation model results
Example: Weight of Pigs

For this type of repeated measures study we recognize two sources of random variation

1. Between: There is heterogeneity between pigs, due for example to natural biological (genetic?) variation
2. Within: There is random variation in the measurement process for a particular unit at any given time. For example, on any given day a particular guinea pig may yield different weight measurements due to differences in scale (equipment) and/or small fluctuations in weight during a day

B) Marginal Model
With a Uniform correlation structure

\[
E[Y_{ij}] = \beta_0 + \beta_1 t_{ij} \quad \text{Model for the mean}
\]

\[
\text{cov}(Y_{ij}) = (\tau^2 + \sigma^2)[\rho 11' + (1 - \rho)I] \quad \text{Model for the covariance matrix}
\]
Marginal Model

\[E[Y_i] = \beta_0 + \beta_1 \text{time} \]

Random Effects Model

\[E[Y_i | U_i] = \beta_0 + \beta_1 \text{time} + U_i \]

\[E[Y_i] = \beta_0 + \beta_1 \text{time} \]
Models A and B are equivalent

\[E[Y_{ij} \mid U_i] = U_i + \beta_0 + \beta_1 t_j \]

\[E[Y_{ij}] = E[E[Y_{ij} \mid U_i]] = \beta_0 + \beta_1 t_j \]

\[\text{cov}(Y_{ij}) = \text{cov}[E[Y_{ij} \mid U_i]] = \tau^2 1' \]

\[\text{cov}[E[Y_{ij} \mid U_i]] = \text{cov}(U_i) = \tau^2 1' \]

\[E[\text{cov}[Y_{ij} \mid U_i]] = E[\sigma^2 I] = \sigma^2 I \]

\[\text{cov}(Y_{ij}) = (\tau^2 + \sigma^2)[\rho 1' 1' + (1 - \rho) I] \]

\[\rho = \frac{\tau^2}{\tau^2 + \sigma^2} \]

Pigs – Marginal model

\texttt{xtreg weight time, pa i(Id) corr(exch)}

Iteration 1: tolerance = 5.585e-15

GEE population-averaged model

\begin{align*}
\text{Number of obs} & = 432 \\
\text{Group variable:} & \quad \text{Id} \\
\text{Link:} & \quad \text{identity} \\
\text{Family:} & \quad \text{Gaussian} \\
\text{Correlation:} & \quad \text{exchangeable} \\
\text{Scale parameter:} & \quad 19.20076 \\
\text{Wald chi2(1)} & = 25337.48 \\
\text{Prob > chi2} & = 0.0000
\end{align*}

| weight | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-------|-----------|-------|----------|----------------------|
| time | 6.209896 | 0.390124 | 159.18 | 0.0000 | 6.133433 6.286359 |
| _cons | 19.35561 | 0.5974055 | 32.40 | 0.0000 | 18.18472 20.52651 |

“Population Average”, Marginal Model with Exchangeable Correlation structure results
Pigs – RE model

xtreg weight, re i(Id) mle

Random-effects ML regression Number of obs = 432
Group variable (i): Id Number of groups = 48
Random effects u_i ~ Gaussian Obs per group: min = 9
 avg = 9.0
 max = 9
Log likelihood = -1014.9268 LR chi2(1) = 1624.57
Prob > chi2 = 0.0000

--
weight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
time | 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons | 19.35561 .5974055 32.40 0.000 18.18472 20.52651
-------------+--
/sigma_u | 3.84935 .4058114 3.130767 4.732863
/sigma_e | 2.093625 .0755471 1.95067 2.247056
rho | .771714 .0393959 .6876303 .8413114
--

"Population Average", Marginal Model with Exchangeable Correlation structure results

Pigs data model 1 – GEE fit

. xtgee weight time, i(Id) corr(exch)

Iteration 1: tolerance = 5.585e-15

GEE population-averaged model Number of obs = 432
Group variable: Id Number of groups = 48
Link: identity Obs per group: min = 9
Family: Gaussian avg = 9.0
Correlation: exchangeable max = 9
Scale parameter: 19.20076 Wald chi2(1) = 25337.48
Wald Prob > chi2 = 0.0000

--
weight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
time | 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons | 19.35561 .5974055 32.40 0.000 18.18472 20.52651
--

GEE fit – Marginal Model with Exchangeable Correlation structure results
Pigs data model 1 – GEE fit

. xtgee weight time, i(Id) corr(exch)
. xtcorr

Estimated within-Id correlation matrix R:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
<th>c5</th>
<th>c6</th>
<th>c7</th>
<th>c8</th>
<th>c9</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>0.7717</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>0.7717</td>
<td>0.7717</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r5</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r6</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r7</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r8</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>r9</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>0.7717</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

GEE fit – Marginal Model with Exchangeable Correlation structure results

One group polynomial growth curve model

- Similarly, if you want to fit a quadratic curve
 \[E[Y_{ij} \mid U_i] = U_i + \beta_0 + \beta_1 t_j + \beta_2 t_j^2 \]

\[
E(Y_i) = \begin{pmatrix}
1 & t_1 & t_1^2 \\
1 & t_2 & t_2^2 \\
. & . & . \\
1 & t_n & t_n^2
\end{pmatrix}
\begin{pmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{pmatrix}
\]
Pigs – RE model, quadratic trend

. gen timesq = time*time
. xtreg weight time timesq, re i(Id) mle

Random-effects ML regression
Number of obs = 432
Group variable (i): Id
Number of groups = 48
Random effects u_i ~ Gaussian
Obs per group: min = 9
avg = 9.0
max = 9

Log likelihood = -1014.5524
LR chi2(2) = 1625.32
Prob > chi2 = 0.0000

--
weight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--
time | 6.358818 .1763799 36.05 0.000 6.01312 6.704516
timesq | -.0148922 .017202 -0.87 0.387 -.0486075 .0188231
_cons | 19.08259 .675483 28.25 0.000 17.75867 20.40651
--
/sigma_u | 3.849473 .4057983 3.130909 4.732951
/sigma_e | 2.091585 .0754733 1.948769 2.244866
rho | .7720686 .0393503 .6880712 .8415775
--

Exchangeable Correlation structure results

Random Effects Model

\[
E[Y_i \mid U_i] = \beta_0 + \beta_1 time + \beta_2 time^2 + U_i \\
E[Y_i] = ?
\]
Pigs – Marg. model, quadratic trend

```
.xtgee weight time timesq, i(Id) corr(exch)
```

GEE population-averaged model

```
 Number of obs = 432
 Number of groups = 48
 Wald chi2(2) = 25387.68
 Prob > chi2 = 0.0000
```

```
+---------------------------------------------+
|               Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] |
|---------------------------------------------|
| time |   6.358818   .1763801    36.05   0.000     6.013119    6.704517 |
| timesq |  -.0148922    .017202    -0.87   0.387    -.0486076    .0188231 |
| _cons |   19.08259   .6754833    28.25   0.000     17.75867    20.40651 |
+---------------------------------------------+
```

Exchangeable Correlation structure results

Pigs data model 1 – GEE fit

```
.xtcorr
```

Estimated within-Id correlation matrix R:

```
      c1   c2   c3   c4   c5   c6   c7   c8   c9
r1  1.0000  
```

```
r2  0.7721  1.0000  
r3  0.7721  0.7721  1.0000  
r4  0.7721  0.7721  0.7721  1.0000  
r5  0.7721  0.7721  0.7721  0.7721  1.0000  
r6  0.7721  0.7721  0.7721  0.7721  0.7721  1.0000  
r7  0.7721  0.7721  0.7721  0.7721  0.7721  0.7721  1.0000  
r8  0.7721  0.7721  0.7721  0.7721  0.7721  0.7721  0.7721  1.0000  
r9  0.7721  0.7721  0.7721  0.7721  0.7721  0.7721  0.7721  0.7721  1.0000  
```

GEE fit – Marginal Model with
Exchangeable Correlation structure results
Pigs – Marginal model: AR(1)

xtgee weight time, i(Id) corr(AR1) t(time)

GEE population-averaged model

| Parameter | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------------|---------|-----------|------|------|----------------------|
| time | 6.27209 | 0.0793052 | 79.09| 0.000| 6.116654 – 6.427524 |
| _cons | 18.84218| 0.6745715 | 27.93| 0.000| 17.52004 – 20.16431 |

Wald chi2(1) = 6254.91

Prob > chi2 = 0.0000

Pigs – RE model: AR(1)

xtregar weight time

RE GLS regression with AR(1) disturbances

| Parameter | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------------------|---------|-----------|------|------|----------------------|
| time | 6.25765 | 0.0555527 | 112.64| 0.000| 6.14677 – 6.366533 |
| _cons | 19.00945| 0.6281622 | 30.26| 0.000| 17.77827 – 20.24062 |

corr(u_i, Xb) = 0 (assumed)

rho_ar = 0.73091237 (estimated autocorrelation coefficient)

sigma_u = 3.583343

rho_fov = 0.84082696 (fraction of variance due to u_i)

theta = 0.60838037

Wald chi2(2) = 12688.55

Prob > chi2 = 0.0000

GEE-fit Marginal Model with AR1 Correlation structure
Important Points

- Modelling the correlation in longitudinal data is important to be able to obtain correct inferences on regression coefficients β
- There are correspondences between random effect and marginal models in the linear case because the interpretation of the regression coefficients is the same as that in standard linear regression