Lecture 4 Linear random coefficients models

Rats example

- 30 young rats, weights measured weekly for five weeks
- Dependent variable $\left(Y_{i j}\right)$ is weight for rat "i" at week " j "
- Data:

	Weights $Y_{i j}$ of rat i on day x_{j}				
	$x_{j}=8$	15	22	29	36
Rat 1	151	199	246	283	320
Rat 2	145	199	249	293	354
$\ldots . .$.					
Rat 30	153	200	244	286	324

- Multilevel: weights (observations) within rats (clusters)

Individual \& population growth

- Rat "i" has its own expected growth line:
$E\left[Y_{i j} \mid b_{0 i}, b_{1 i}\right]=b_{0 i}+b_{1 i} x_{j}$
- There is also an overall, average population growth line:

$$
E\left[Y_{i j}\right]=\beta_{0}+\beta_{1} x_{j}
$$

Improving individual-level estimates

- Possible Analyses

1. Each rat (cluster) has its own line:

$$
\text { intercept= } b_{i 0} \text {, slope }=b_{i 1}
$$

2. All rats follow the same line:

$$
b_{i 0}=\beta_{0}, \quad b_{i 1}=\beta_{1}
$$

3. A compromise between these two:

Each rat has its own line, BUT...
the lines come from an assumed distribution
$E\left(Y_{i j} \mid b_{i 0}, b_{i 1}\right)=b_{i 0}+b_{i 1} X_{j}$
"Random Effects" $\left\{\begin{array}{l}b_{i 0} \sim N\left(\beta_{0}, \tau_{0}{ }^{2}\right) \\ b_{i 1} \sim N\left(\beta_{1}, \tau_{1}{ }^{2}\right)\end{array}\right.$

A compromise:

Each rat has its own line, but information is borrowed across rats to tell us about individual

Bayesian paradigm provides methods for "borrowing strength" or "shrinking"

Inner-London School data:

How effective are the different schools? (gcse.dat,Chap 3)

- Outcome: score exam at age 16 (gcse)
- Data are clustered within schools
- Covariate: reading test score at age 11 prior enrolling in the school (lrt)
- Goal: to examine the relationship between the score exam at age 16 and the score at age 11 and to investigate how this association varies across schools

More about the data...

- At age 16, students took their Graduate Certificate of Secondary Education (GCSE) exams
- Scores derived from the GCSE are used for schools comparisons
- However, schools should be compared based upon their "value added"; the difference in GCSE score between schools after controlling for achievements before entering the school
- One such measure of prior achievement is the London Reading Test (LRT) taken by these students at age 11
- Goal: to investigate the relationship between GCSE and LRT and how this relationship varies across schools. Also identify which schools are most effective, taking into account intake achievement

Fig 3.1: Scatterplot of gcse vs Irt for school 1 with regression line)

Figme 3.1: Saticrj)lot of gase versins Irt for school $]$ with regression line

Linear regression model with random intercept and random slope

i denotes the child
j denotes the school

$$
\begin{aligned}
Y_{i j} & =\left(b_{0 j}+\beta_{0}\right)+\left(b_{1 j}+\beta_{1}\right) x_{i j}+\varepsilon_{i j} \\
\text { gcse } \quad b_{0 j} & \sim N\left(0, \tau_{1}^{2}\right) \\
& b_{1 j} \sim N\left(0, \tau_{2}^{2}\right) \\
& \operatorname{cov}\left(b_{0 j}, b_{1 j}\right)=\tau_{12}
\end{aligned}
$$

Fig 3.3: Fitted regression lines for all the schools with at least 5 students

Considerable variability
among school specific intercepts and slopes

Figure 3.3: Scatterplot of intercepts and slopes for all schools with at least 5 students

Linear regression model with random intercept and random slope

$$
\begin{aligned}
& Y_{i j}=\left(b_{0 j}+\beta_{0}\right)+\left(b_{1 j}+\beta_{1}\right) x_{i j}+\varepsilon_{i j} \\
& Y_{i j}=\left(\beta_{0}+\beta_{1} x_{i j}\right)+\left(b_{0 j}+b_{1 j} x_{i j}\right)+\varepsilon_{i j} \\
& \xi_{i j}=\left(b_{0 j}+b_{1 j} x_{i j}\right)+\varepsilon_{i j} \\
& \operatorname{var}\left(\xi_{i j}\right)=\tau_{1}^{2}+2 \tau_{12} x_{i j}+\tau_{2}^{2} x_{i j}^{2}+\sigma^{2}
\end{aligned}
$$

The total residual variance is said to be heteroskedastic because depends on x

$$
\begin{aligned}
& \tau_{2}^{2}=\tau_{12}=0 \\
& b_{1 j}=0 \\
& \operatorname{var}\left(\xi_{i j}\right)=\tau_{1}^{2}+\sigma^{2} \quad \text { Model with random intercept only }
\end{aligned}
$$

Empirical Bayes Prediction (xtmixed reff*,reffects)

In stata we can calculate:
$\left(\tilde{b}_{0 j}, \tilde{b}_{1 j}\right)$
EB: borrow strength across schools
$\left(\hat{b}_{0 j}, \hat{b}_{1 j}\right)$
MLE: DO NOT borrow strength across Schools

Table 3.1: MLE for the inner-London

] arammet $^{\text {a }}$	Madel 1: Ranklon intereper	Model 2: Randon interept and slope	
	Estimate (SE)	Estimatc	(SE)

Fixal jand					
correlation	β_{1} [-cons]	0.02	(0.40)	-0.12	(0.40)
between the random intercept and slope	λ_{2} [lrt]	0.56	(0.01)	0.56	(0.02)
	Random part xtmixed				
	$\sqrt{411}$	3.04	(1).31)	3.01	(0.30)
	$\sqrt{122}$			0.12	(0.02)
	(121)			0.50	(0.15)
	$\sqrt{\theta}$	7.52	(0.84)	7.44	(0.08)
Between schools					
variances	[11	9.21	(1.85)	9.04	(1.83)
				0.01	(0.00)
	$1 \cdot 2$			1) 18	(0.07)
with	$1{ }^{1}$	56.57	(1.27)	55.37	(1.25)
variance Log likolimome		- 1402		- 1400	

Fig 3.9: Scatter plot of EB versus ML

estimates

Slopes are shrunk toward the overall mean more heavily than the intercepts
The resulting graphs are shown in figure 3.9.

Figure 3.9: Scatterplot of EB predictions versus ML estimates of school-specific intercepts (left) and slopes (right) with equality shown as reference lines

Interpretation of the random intercepts

- The EB estimates of the random intercepts can be viewed as measures of how much "value" the schools add for children with a LRT score equal to zero (the mean)
- Therefore the left panel of Fig 3.9 sheds some light on the research question: which schools are most effective?

EB estimates

- We could also produce plots for children with a different value of the LRT scores

$$
\left(\tilde{b}_{0 j}+\hat{\beta}_{0}\right)+\left(\tilde{b}_{1 j}+\hat{\beta}_{1}\right) x_{0}
$$

Note: xtmixed does not provide standard errors of the EB estimates

Fig 3.10: EB predictions of school-specific lines

Figure 3.10: Empirical Bayes predictions of school-specific regression lines for th random-intercept model (left) and the random-intercept and random-slope model (right

Random Intercept EB estimates and ranking (Fig 3.11)

Figure 3.11: Random-intercept predictions and approximate 95% confidence intervals versus ranking (school identifiers shown on top of confidence intervals)

Growth-curve modelling (asian.dta)

-Measurements of weight were recorded for children up to 4 occasions at 6 weeks, and then at 8,12 , and 27 months

- Goal: We want to investigate the growth trajectories of children's weights as they get older
-Both shape of the trajectories and the degree of variability are of interest

Fig 3.12: Observed growth trajectories for boys and girls

What we see in Fig 3.12?

- Growth trajectories are not linear
- We will model this by including a quadratic term for age
- Some children are consistent heavier than others, so a random intercept appears to be warranted

Quadratic growth model with random intercept and random slope

$$
\begin{aligned}
& Y_{i j}=\beta_{1}+\beta_{2} x_{i j}+\beta_{3} x_{i j}^{2}+\zeta_{1 j}+\varsigma_{2 j} x_{i j}+\varepsilon_{i j}(A) \\
& Y_{i j}=\beta_{1}+\beta_{2} x_{i j}+\beta_{3} x_{i j}^{2}+\beta_{4} w_{j}+\varsigma_{1 j}+\varsigma_{2 j} x_{i j}+\varepsilon_{i j}(B) \\
& \text { Dummy for girls }
\end{aligned}
$$

We included a dummy for the girls to reduce the random Intercept standard deviation

Table 3.2: MLE for children's growth data

Table 3.2: Maximum likelihood estimates for children's growth data

		Model 1: Random intercept		Model 2: Random intercept and slope	
		Est	(SE)	Est	(SE)
Random slope standard deviation	Fixed part β_{1} \|-cons] β_{2} [age] β_{3} (age2]	$\begin{array}{r} 3.43 \\ 7.82 \\ -1.71 \end{array}$	$\begin{aligned} & (0.18) \\ & (0.29) \\ & (0.11) \end{aligned}$	$\begin{array}{r} 3.49 \\ 7.70 \\ -1.66 \end{array}$	$\begin{aligned} & (0.14) \\ & (0.24) \\ & (0.09) \end{aligned}$
	Random part xtmixed				
	$\sqrt{\psi_{11}}$	0.92	(0.10)	0.64	(0.13)
	$\sqrt{\psi_{22}}$			0.50 0.27	$\begin{aligned} & \hline(0.09) \\ & (0.33) \end{aligned}$
Level-1 residual standard deviation	$\sqrt{\theta}$	0.73	(0.05)	0.58	(0.05)
	gllamm				
	ψ_{11}	0.84	(0.18)	0.40	
	ψ_{22}			0.25	(0.09)
	ψ_{21}			0.09	(0.09)
	θ	0.54	(0.06)	0.33	(0.06)
	Log likelihood	-276.83		-258.08	

Two-stage model formulation

$$
\begin{array}{ll}
\left.\begin{array}{l}
\text { Model C } \\
y_{i j}=\eta_{1 j}+\eta_{2 j} x_{i j}+\beta_{3} x_{i j}^{2}+\varepsilon_{i j} \\
\text { Stage 1 } \\
\eta_{1 j}=\gamma_{11}+\gamma_{12} w_{1 j}+\varsigma_{1 j} \\
\eta_{2 j}=\gamma_{21}+\varsigma_{2 j}
\end{array}\right\} \quad \text { Stage 2 } \\
\begin{array}{l}
y_{i j}=\gamma_{11}+\gamma_{12} w_{1 j}+\zeta_{1 j}+\gamma_{21} x_{i j}+\zeta_{2 j} x_{i j}+\beta_{3} x_{i j}^{2}
\end{array} \varepsilon_{i j} \\
y_{i j}=\underbrace{\gamma_{11}+\gamma_{21} x_{i j}+\beta_{3} x_{i j}^{2}+\beta_{4}}_{\text {Fixed effects }} w_{1 j}+\underbrace{\zeta_{1 j}+\zeta_{2 j} x_{i j}}_{\text {Random effects }}+\varepsilon_{i j}
\end{array}
$$

Model C is the same as model B

Cross-level interactions

$$
\left.\begin{array}{l}
y_{i j}=\eta_{1 j}+\eta_{2 j} x_{i j}+\beta_{3} x_{i j}^{2}+\varepsilon_{i j} \\
\eta_{1 j}=\gamma_{11}+\gamma_{12} w_{1 j}+\varsigma_{1 j} \\
\eta_{2 j}=\gamma_{21}+\gamma_{22} w_{1 j}+\varsigma_{2 j} \\
y_{i j}=\underbrace{\gamma_{1 j}}_{\eta_{11}+\gamma_{12} w_{1 j}+\varsigma_{1 j}}+\underbrace{\gamma_{21} x_{i j}+\gamma_{22}\left(w_{1 j} \times x_{i j}\right)}_{\eta_{2 j}}+\varsigma_{2 j} x_{i j}
\end{array}\right) \beta_{3} x_{i j}^{2}+\varepsilon_{i j},
$$

Table 3.3: Maximum likelihood estimates for models including both random intercept and slope for children's growth data (reduced-form notation)

	Model 2		Model 3		Model 4	
	Est	(SE)	Est	(SE)	Est	(SE)
Fixed part.						
β_{1} [-cons]	3.49	(0.14)	3.79	(0.17)	3.75	(0.17)
β_{2} [age]	7.70	(0.24)	7.70	(0.24)	7.81	(0.25)
β_{3} [age2]	-1.66	(0.09)	-1.66	(0.09)	-1.66	(0.09)
β_{4} [girl]			-0.60	(0.20)	-0.54	(0.21)
β_{5} [girl \times age $]$					-0.23	(0.17)
Random part xtmixed						
$\sqrt{\psi_{11}}$	0.64	(0.13)	0.59	(0.13)	0.59	(0.13)
$\sqrt{\psi_{22}}$	0.50	(0.09)	$0.5]$	(0.09)	0.50	(0.09)
P_{21}	0.27	(0.33)	0.16	(0.32)	0.19	(0.34)
$\sqrt{\theta}$	0.58	(0.05)	0.57	(0.05)	0.57	(0.05)
gllamm						
ψ_{11}	0.40	(0.16)	0.35	(0.15)	0.35	(0.15)
ψ_{22}	0.25	(0.09)	0.26	(0.09)	0.25	(0.09)
ψ_{21}	0.09	(0.09)	0.05	(0.09)	0.05	(0.09)
θ	0.33	(0.06)	0.33	(0.06)	0.33	(0.06)
Log likelihood	-25	. 08	-25	. 87	-25	2.99

