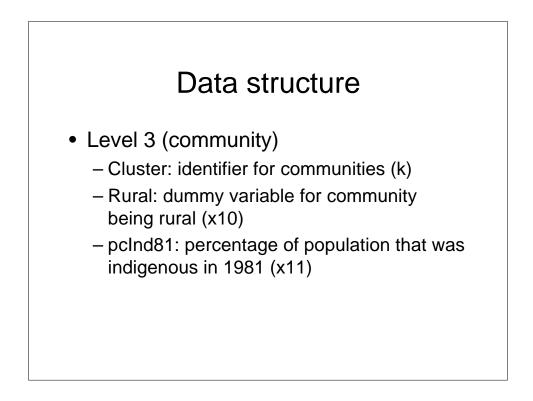
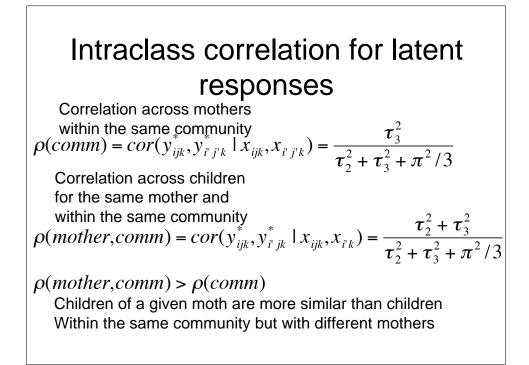
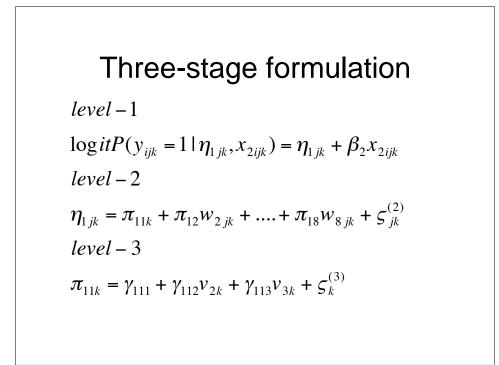

Lecture 9 Three levels Logistic Random Intercept Model



Did the Guatemalan immunization campaign work?

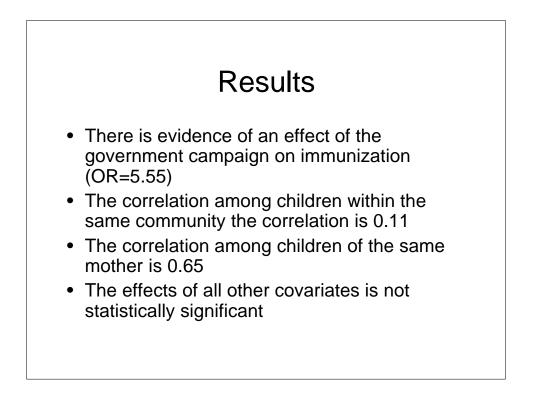
- Beginning 1986, the Guatemalan government undertook a series of campaign to immunize the population against major childhood diseases
- An important explanatory variable is whether the child was at least 2 years old at the time of the interview, in which case the child was old enough to be immunized during the 1986 campaign
- If this variable is associated with immunization, there is some indication that the government campaign work



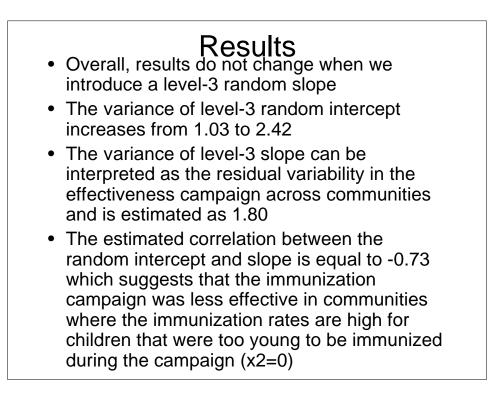

A three-level logistic randomintercept model

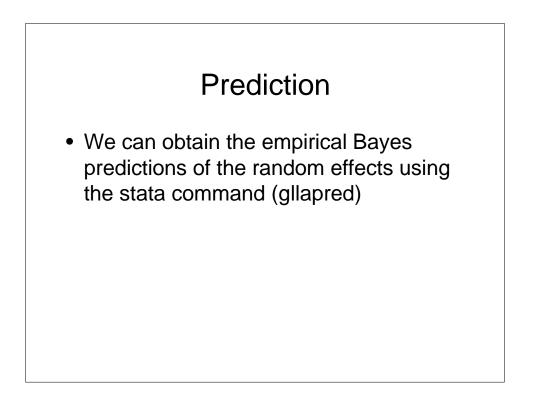
$$\log it P(y_{ijk} = 1 | x_{ijk}, \varsigma_{jk}^{(2)}, \varsigma_{k}^{(3)}) = \beta_{1} + \varsigma_{jk}^{(2)} + \varsigma_{k}^{(3)} + \beta_{2} x_{2ijk} + \sum_{p=3}^{9} \beta_{p} x_{pjk} + \beta_{10} x_{10k} + \beta_{11} x_{11k}$$
$$\varsigma_{jk}^{(2)} \sim N(0, \tau_{2}^{2})$$
$$\varsigma_{k}^{(3)} \sim N(0, \tau_{3}^{2})$$

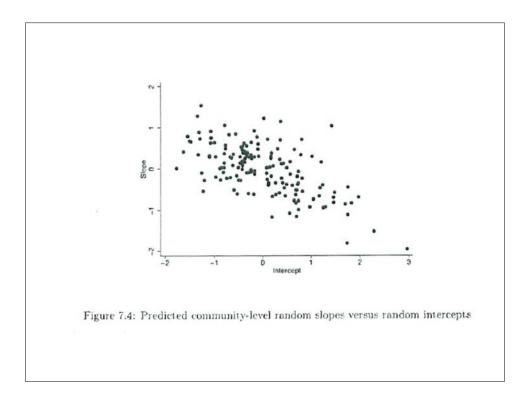
Latent variable formulation


$$y_{ijk}^{*} = \beta_{1} + \zeta_{jk}^{(2)} + \zeta_{k}^{(3)} + \\
+ \beta_{2}x_{2ijk} + \sum_{p=3}^{9} \beta_{p}x_{pjk} + \beta_{10}x_{10k} + \beta_{11}x_{11k} + \varepsilon_{ijk} \\
\zeta_{jk}^{(2)} \sim N(0, \tau_{2}^{2}) \\
\zeta_{k}^{(3)} \sim N(0, \tau_{3}^{2}) \\
y_{ijk} = 1 \Leftrightarrow y_{ijk}^{*} > 0 \\
\Pr(\varepsilon_{ijk} < h) = \exp(h)/(1 + \exp(h)) \\
E[\varepsilon_{ijk}] = 0, \operatorname{var}(\varepsilon_{ijk}) = \pi^{2}/3$$

	$Log odds = \beta$		Odds 1	Odds ratios = $\exp(\beta)$	
	Est	(SE)	OR	(95% Cl)	
Fixed part					
31 [_cons]	-1.03	(0.41)			
<pre>/d2 [kid2p]</pre>	1.71	(0.22)	5.55	(3.64, 8.46)	
β_{Λ} [indNoSpa]	-0.30	(0.48)	0.74	(0.29, 1.89)	
3, [indSpa]	-0.16	(0.36)	0.85	(0.42, 1.72)	
//+, [momEdPri]	0.38	(0.22)	1.47	(0.96, 2.25)	
<pre>//in [momEdSec]</pre>	0.36	(0.47)	1.44	(0.57, 3.63)	
<pre>//7 [husEdPri]</pre>	0.50	(0.23)	1.65	(1.05, 2.57)	
β_{\aleph} [husEdSec]	0.44	(0.40)	1.55	(0.70, 3.42)	
1/1 [husEdDK]	-0.01	(0.35)	0.99	(0.50, 1.97)	
β_{10} [rural]	-0.91	(0.30)	0.41	(0.23, 0.74)	
Bii [pcInd81]	-1.15	(0.49)	0.32	(0, 12, 0.83)	
Random part					
$e^{2(2)}$	5.19	(1.19)			
$v^{(3)}$	1.03	(0.32)			
Log likelihood			-1328.50		


Introducing a random coefficient at level 3: does the effect of the campaign varies across communities?


$$log it P(y_{ijk} = 1 | x_{ijk}, \zeta_{jk}^{(2)}, \zeta_{1k}^{(3)}, \zeta_{2k}^{(3)},) = \beta_1 + \beta_2 x_{2ijk} + \beta_{10} x_{10k} + \beta_{11} x_{11k} + \zeta_{jk}^{(2)} + \zeta_{1k}^{(3)} + \zeta_{2k}^{(3)} x_{2ijk} + log it P(y_{ijk} = 1 | x_{ijk}, \zeta_{jk}^{(2)}, \zeta_{1k}^{(3)}, \zeta_{2k}^{(3)},) = (\beta_1 + \zeta_{jk}^{(2)} + \zeta_{1k}^{(3)}) + (\beta_2 + \zeta_{2k}^{(3)}) x_{2ijk} + \beta_{10} x_{10k} + \beta_{11} x_{11k}$$


Table 7.3: Maximum likelihood e	stimates for t	hree-level rar	idom-intercept	and random-
coefficient logistic models				

	Random Intercept		Random Coefficient	
	Est	(95% Cl)	Est	(95% Cl)
Fixed part: odds rat	lios			
$\exp(\beta_2)$ [kid2p]	5.37	(3.53, 8.17)	6.73	(3.79, 11.96)
$\exp(\beta_{10})$ [rural]	0.35	(0.20, 0.60)	0.33	(0.18, 0.59)
$\exp(\beta_{11})$ [pcInd81]	0.19	(0.09, 0.38)	0.18	(0.08, 0.37)
Random part				
y,(2)	5.21		5.83	
$\psi_{11}^{(3)}$	1.03		2.42	
1/1(3)			1.80	
$\psi_{22}^{(3)}$ $\psi_{21}^{(3)}$			-1.52	
Log likelihood		-1335.04	-	-1330.83

The random coefficient models fits significantly better than random intercept using a LRT at 5% level

