
Original Contribution

Marginal Modeling of Nonnested Multilevel Data using Standard Software

Diana L. Miglioretti1 and Patrick J. Heagerty2

1 Group Health Center for Health Studies, Seattle, WA.
2 Department of Biostatistics, University of Washington, Seattle, WA.

Received for publication November 1, 2005; accepted for publication July 11, 2006.

Epidemiologic data are often clustered within multiple levels that may not be nested within each other. Gener-
alized estimating equations are commonly used to adjust for correlation among observations within clusters when
fitting regression models; however, standard software does not currently accommodate nonnested clusters. This
paper introduces a simple generalized estimating equation strategy that uses available commercial or public soft-
ware for the regression analysis of nonnested multilevel data. The authors describe how to obtain empirical
standard error estimates for constructing valid confidence intervals and conducting statistical hypothesis tests.
The method is evaluated using simulations and illustrated with an analysis of data from the Breast Cancer Sur-
veillance Consortium that estimates the influence of woman, radiologist, and facility characteristics on the positive
predictive value of screening mammography. Performance with a small number of clusters is discussed. Both the
simulations and the example demonstrate the importance of accounting for the correlation within all levels of
clustering for proper inference.

clustered data; generalized estimating equation; generalized linear model

Abbreviations: C1ID, observations belonging to cluster 1 (C2ID defined analogously); GEE, generalized estimating equation;
ID, cluster-identifying variable; n-ID, ID for neighborhood; p-ID, ID for provider; PPV, positive predictive value.

Statistical analyses of epidemiologic studies often need
to adjust for correlation among observations that arise in
‘‘clusters.’’ For example, outcomes for individual subjects
may be clustered within providers and clinics. In other set-
tings, clusters may arise from the repeated measurement of
individuals over time in longitudinal studies or through social
or geographic organization of individuals within communi-
ties or neighborhoods. Often, the multiple levels of clustering
may not be perfectly nested within each other. For example,
a population of patients may be treated at clinics served by a
common collection of physicians, and physicians may prac-
tice at multiple clinics. Alternatively, correlation among health-
care utilization outcomes may be induced via shared providers
or clinics and unmeasured geographic factors. When evaluat-
ing the relation between individual outcomes and variables

measured at any cluster level, one must consider in a proper
statistical analysis the potential correlation induced by unmea-
sured heterogeneity at each level of clustering.

One approach to analyzing multilevel data explicitly rep-
resents sources of unmeasured heterogeneity that induce
clustering or correlation. Such methodology is referred to
as multilevel, hierarchical, random effects, or mixed mod-
eling and is implemented through computationally intensive
maximum likelihood or Bayesian methods. In the case of
one or two levels of clustering, nonlinear regression models
(e.g., logistic regression) can be fit using standard software,
such as SAS (SAS Institute, Inc., Cary, North Carolina) and
STATA (StataCorp LP, College Station, Texas), even when
the clusters are nonnested. However, when interest is in
marginal (population-averaged) effects, most conditionally
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specified multilevel nonlinear models do not directly ad-
dress the scientific question and must either be marginalized
to obtain model summaries or reparameterized to allow direct
inference on marginal contrasts (1, 2). Ritz and Spiegelman
(3) and Wang and Louis (4) discuss situations when coeffi-
cients from conditional and marginal regression models are
equivalent. Several authors provide guidance on how to de-
termine whether marginal or conditional models are of sci-
entific interest (2, 5, 6).

When interest is in marginal effects, generalized estimat-
ing equations (GEEs) are commonly used (7). Regression
analyses based on GEEs directly model the marginal mean
and may be computationally feasible even with large num-
bers of observations and clusters. Although popular statisti-
cal packages, such as SAS and STATA, easily fit generalized
linear models using GEEs, they do not currently directly
accommodate nonnested clusters. For nonnested, multilevel,
binary data with two levels of clustering, Miglioretti and
Heagerty (8) compare and contrast a marginalized multi-
level model fit using a likelihood (Bayesian) approach and
a simple three-step, moment-based GEE method that uses
standard software. In this paper, we describe this extension
of GEEs, which is straightforward to implement and has the
potential to deal with several levels of clustering. We eval-
uate the approach using simulated data and illustrate the
method using data from the Breast Cancer Surveillance Con-
sortium, with which we estimate the influence of woman,
radiologist, and facility characteristics on the positive pre-
dictive value of screening mammography.

GENERALIZED ESTIMATING EQUATIONS APPROACH

Let Yi represent the outcome of interest for the ith ob-
servation, i ¼ 1; . . . ;N: We first consider the case when Yi
is clustered within two nonnested levels, C1 and C2 (e.g., a
single outcome observed on each patient clustered within
physicians and clinics where physicians may practice at
more than one clinic). We model the influence of a p 3 1
vector of covariates Xi on the marginal mean li ¼ E YijXið Þ
using a generalized linear model (9):

gðEðYijXiÞÞ¼Xib:

The covariates Xi may be measured at the level of the ob-
servation and/or the level of one or both levels of clustering.

GEEs were originally introduced for analysis of clustered
data that arise through repeated measurements of individu-
als in a prospective longitudinal study. Standard software
implementations of GEEs allow the user to select a ‘‘work-
ing correlation’’ matrix that is used to form a weighted ver-
sion of the standard regression estimator. The specific choice
of the correlation model is not crucial for valid inference
(7). A ‘‘sandwich variance’’ estimator is empirically calculated
from the data, and this accounts for arbitrary correlation
among observations within a cluster. Thus, it is possible to
simply use an independence working correlation matrix,
which does not modify the estimated regression coefficients
but provides inference on coefficient estimates that properly
accounts for correlation within the specified clusters. In ad-

dition, if multiple clusters are perfectly nested, GEE cluster-
ing on the top level cluster accounts for the multilevel
correlation structure through the sandwich variance estima-
tor (10). For nonnested clusters, we detail use of GEEs with
‘‘working independence’’ to obtain the necessary sandwich
variance calculations to provide valid standard errors for re-
gression coefficients.

Implementation of GEEs requires a cluster-identifying
variable (ID) that signifies potentially correlated outcomes.
The sandwich variance is estimated by the sum of weighted
residual cross-product terms wj Yj � lj

� �
3wk Yk � lkð Þ for

all pairs of observations that are from the same cluster (with
weights wj and wk specific to the regression model). One
way to view this correction is through a simple logical op-
eration on the ID variable. If ID(j) ¼ ID(k), the observation
pair (j, k) contributes a term to the sandwich variance esti-
mator. For nonnested multilevel data, empirical covariance
contributions from pairs of observations that are clustered
on any one of the clustering variables need to be included.
For example, if we have an ID for provider (p-ID) and an ID
for neighborhood (n-ID), we need to include correlation
contributions whenever (p-ID(j) ¼ p-ID(k)) or (n-ID(j) ¼
n-ID(k)). Viewed logically, we can evaluate the ‘‘or’’ oper-
ation using (share p-ID) or (share n-ID) ¼ (share p-ID) þ
(share n-ID) – (share p-ID and n-ID). This connection re-
veals how we can use standard software to obtain a standard
error correction for clustering within both providers and
neighborhoods. Using GEE clustering on p-ID will include
all cross-products that share a provider, and GEE clustering
on n-ID will account for all intraneighborhood correlations.
Finally, subtraction of cross-product terms for observations
that have been counted twice, because they share both pro-
vider and neighborhood, is accomplished by using GEE
clustering on the unique combinations of provider and
neighborhood. This reasoning also demonstrates why anal-
ysis of perfectly nested clusters requires clustering only on
the top-level cluster. If providers are nested within neighbor-
hoods, observations that share p-ID also share n-ID; there-
fore, the third term (share p-ID and n-ID) is identical to the
first term (share p-ID).

More generally, let C1ID identify observations belonging
to the same cluster C1, C2ID identify observations belong-
ing to C2, and C1C2ID identify observations belonging to
both C1 and C2. The covariance matrix for the estimated
regression coefficients b̂ is simply a linear combination of
three covariance matrices estimated via GEE:

Vðb̂Þ¼V
1 þV

2 �V
3

where V1, V2, and V3 are the covariance matrices estimated
from working independence GEE models clustering on
C1ID, C2ID, and C1C2ID, respectively. The mathematical der-
ivation of this result is provided in Miglioretti and Heagerty
(8). Note that b̂ for all three models will be identical when
using working independence. Given b̂ and V b̂

� �
, standard

Wald-based confidence intervals and test statistics may be
calculated.

Sample SAS and STATA code for fitting a logistic re-
gression model using the GEE approach with two levels
of clustering is included in Appendix A.

454 Miglioretti and Heagerty

Am J Epidemiol 2007;165:453–463



Extension to more than two levels of clustering

The GEE approach can be extended to more than two
levels of clustering; however, the number of models that
must be fit grows quickly with increasing numbers of cluster
levels (2K � 1 fits are required for K levels of clustering).
For example, three levels of clustering, C1, C2, and C3, re-
quire fitting seven models: three clustering separately on
each of the clustering factors; three clustering on each of
the pairwise combinations of the cluster levels; and one
clustering on the combination of all three cluster levels.
The corrected covariance matrix is given by the addition
of the first three covariance matrices minus each of the
second three matrices plus the final matrix. This calculation
follows the logical representation of (share C1) or (share C2)
or (share C3) using (share C1) þ (share C2) þ (share C3) �
(share C1 and C2)� (share C1 and C3)� (share C2 and C13)þ
(share C1 and C2 and C3). Mathematical details are pro-
vided in Appendix B.

Performance with a small number of clusters

Sandwich variance estimates were originally proposed
for use with independent data having nonconstant variance
(heteroskedasticity) and for correlated longitudinal data. In
each of these scenarios, typical applications involve hun-
dreds of observations or clusters, and the empirical standard
error estimator has been shown to perform well. However,
when the number of independent clusters is small, the use of
GEEs with a sandwich variance estimator has been shown to
be anticonservative, resulting from biased standard error
estimates (11, 12).

Mancl and DeRouen (13) overview several corrections to
improve small-sample performance including the follow-
ing: resampling methods such as the bootstrap or jackknife;
alternative tailored sandwich estimators that explicitly
account for the estimation of the regression coefficient; and
a simple scaling by K= K � pð Þ, where K is the number of
clusters and p is the number of regression parameters. Use
of the jackknife correction involves multiple reestimation of
the regression coefficients after removal of an independent
block of data (usually one cluster). This approach could be
adopted for estimation of the sandwich variance components
(V1,V2,V3) that form the basis for estimation with nonnested
data; however, direct use of jackknife methods is not straight-
forward when data have a crossed correlation structure,
because independent blocks are not easily identified. Alter-
natively, the simple scaling correction, K= K � pð Þ, could be
easily applied to each covariance matrix before they are com-
bined. When the number of clusters within a level is less than
50, some sensitivity analysis is warranted to evaluate the
potential for small-sample bias.

ILLUSTRATIONS USING SIMULATIONS

In this section, we use simulations to demonstrate the
potential magnitude of standard error adjustment that can
result from proper correction for clustering within non-
nested levels and to evaluate our proposed method. We show

the inaccuracy that may result from adjusting for only one
level of clustering and demonstrate that the proposed GEE
correction for both nonnested levels of clustering provides
standard error estimates that approximate the true sampling
variability and thus provide for valid inference. Previous
research has shown that sandwich variance estimates can
perform poorly when the number of clusters is small and
correlation within clusters is large (13). Therefore, we pre-
sent a series of simulations where we vary the number of
clusters and the strength of dependence (or equivalently the
magnitude of heterogeneity among the clusters).

We considered two levels of clustering in the generation
of the data, and we generically refer to one level as provider
with identifying variable p-ID and the second level as neigh-
borhood, identified by the variable n-ID. Examples of such
data include health-care utilization outcomes where obser-
vations are grouped into geographic units such as ZIP codes
or census tracts (neighborhoods), but observations are also
clustered into medical clinics (providers) or reliability stud-
ies where each medical image (forms neighborhood) is read
and classified by multiple radiologists (providers).

To simulate data, we initially (scenario 1) created J ¼ 30
provider IDs (p-ID) and K ¼ 50 neighborhood IDs (n-ID).
For each combination of p-ID and n-ID, we generated be-
tween i ¼ 1 and 5 binary observations, Yjki, representing
a dichotomous outcome measured on individuals from pro-
vider j and neighborhood k. In contrast to other sections
where we represent an outcome as Yi, in this section we
subscript using individual (i), provider (j), and neighbor-
hood (k) to make explicit the level at which the covariates
are measured. We generated Yjki with a marginal regression
model structure using a provider-level covariate X1,j, a
neighborhood-level covariate X2,k, and an individual-level
covariate X3,jki,

logitPðYjki¼ 1jXÞ¼ b0 þb1X1;jþb2X2;kþb3X3;jki;

where b0 ¼ –1.5, b1 ¼ b2 ¼ 0.5, and b3 ¼ 0.25. Each binary
covariate was generated from a Bernoulli distribution with
a prevalence of 0.5. Correlation was induced using normally
distributed random provider and neighborhood effects with
standard deviations of 0.5 and 1.0 for scenario 1. Additional
scenarios differed from the first scenario as follows: J ¼ 20
and K ¼ 80 to illustrate performance with a very small
number of clusters for one dimension; correlation present
in only one level of clustering (either within-provider only
or within-neighborhood only); and smaller within-cluster
dependence using random effects standard deviations half
the size used for scenario 1.

We used marginalized random effects models to generate
the data (14), which permit fixing the marginal logistic re-
gression parameters while allowing us to vary the magnitude
of unexplained variation across both providers and neigh-
borhoods. We generated 5,000 simulated data sets and esti-
mated marginal logistic regression parameters b using GEEs
with working independence. For standard error estimation,
we compared naı̈ve estimates assuming independent data,
GEE estimates clustering on p-ID only, GEE estimates clus-
tering on n-ID only, and the proposed three-step correction
for clustering on both neighborhood and provider. Because
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we explore scenarios with relatively small numbers of clus-
ters, we applied the simple scalar correction discussed in the
previous section, multiplying the empirical variance estimator
by J= J � pð Þ and K= K � pð Þ when using GEEs to cluster on
p-ID and n-ID, respectively. For consistency, we also applied
the correction when clustering on the combination of both
p-ID and n-ID, although the size of this correction is quite
small (e.g., JK= JK � pð Þ ¼ 1; 500=1; 496 for scenario 1).

The simulation results show that inference for regression
parameters can be quite inaccurate unless properly account-
ing for clustering (table 1). For example, in the initial sce-

nario (scenario 1), the naı̈ve standard error is estimated on
average as 0.046 for b3 (corresponding to the individual-
level covariate), while any of the clustering corrections yield
an estimated standard error approximately 10-fold smaller.
The naı̈ve estimate also yields standard errors for the co-
efficient of the neighborhood covariate, b2, that are approx-
imately 25 percent too small (0.047/0.061 ¼ 77 percent) and
therefore contain the true parameter value only 91 percent of
the time rather than the nominal 95 percent coverage. Table 1
shows that inference regarding the provider-level covariate
is approximately correct when clustering on provider, but

TABLE 1. Results of simulations examining estimated regression coefficients, standard errors, and 95% coverage probabilities from

the naı̈ve (unadjusted) model and generalized estimating equation estimates that adjust for correlation within provider only,

neighborhood only, and both provider and neighborhood*

Parametery

Regression
coefficients

SEz and 95% CIz coverage

Naı̈ve
Generalized estimating equation

Sampling
SE

Provider only Neighborhood only Both levels

Truth Estimated SE
95% CI
coverage

SE
95% CI
coverage

SE
95% CI
coverage

SE
95% CI
coverage

Scenario 1: J ¼ 30, K ¼ 50,
r( j ) ¼ 0.5, r(k) ¼ 1.0

Intercept b0 �1.50 �1.51 0.049 0.054 0.96 0.019 0.77 0.038 0.91 0.050 0.94

Provider b1 0.50 0.50 0.028 0.047 0.99 0.030 0.95 0.0055 0.61 0.028 0.94

Neighborhood b2 0.50 0.50 0.061 0.047 0.91 0.0056 0.44 0.065 0.95 0.063 0.94

Individual b3 0.25 0.25 0.0055 0.046 1.00 0.0060 0.95 0.0058 0.95 0.0063 0.96

Scenario 2: J ¼ 20, K ¼ 80,
r( j ) ¼ 0.5, r(k) ¼ 1.0

Intercept b0 �1.50 �1.52 0.044 0.052 0.97 0.026 0.84 0.025 0.85 0.044 0.94

Provider b1 0.50 0.51 0.040 0.044 0.96 0.043 0.94 0.0049 0.50 0.041 0.94

Neighborhood b2 0.50 0.51 0.040 0.044 0.96 0.0054 0.51 0.041 0.95 0.040 0.95

Individual b3 0.25 0.25 0.0049 0.044 1.00 0.0059 0.95 0.0052 0.95 0.0061 0.95

Scenario 3: J ¼ 30, K ¼ 50,
r( j ) ¼ 0, r(k) ¼ 0.5

Intercept b0 �1.50 �1.50 0.015 0.054 1.00 0.007 0.79 0.016 0.95 0.016 0.95

Provider b1 0.50 0.50 0.005 0.047 1.00 0.006 0.95 0.0056 0.94 0.005 0.93

Neighborhood b2 0.50 0.50 0.024 0.047 0.99 0.0059 0.65 0.025 0.95 0.025 0.95

Individual b3 0.25 0.25 0.0052 0.046 1.00 0.0059 0.96 0.0056 0.95 0.0062 0.96

Scenario 4: J ¼ 30, K ¼ 50,
r( j ) ¼ 0.5, r(k) ¼ 0

Intercept b0 �1.50 �1.51 0.022 0.054 1.00 0.024 0.95 0.006 0.71 0.024 0.94

Provider b1 0.50 0.50 0.036 0.047 0.97 0.039 0.95 0.0056 0.55 0.038 0.95

Neighborhood b2 0.50 0.50 0.005 0.047 1.00 0.0059 0.95 0.005 0.94 0.005 0.93

Individual b3 0.25 0.25 0.0054 0.047 1.00 0.0059 0.95 0.0057 0.95 0.0063 0.95

Scenario 5: J ¼ 30, K ¼ 50,
r( j ) ¼ 0.25, r(k) ¼ 0.5

Intercept b0 �1.50 �1.51 0.019 0.055 1.00 0.011 0.84 0.016 0.91 0.020 0.94

Provider b1 0.50 0.50 0.012 0.048 1.00 0.014 0.95 0.0055 0.80 0.013 0.95

Neighborhood b2 0.50 0.50 0.023 0.047 1.00 0.0058 0.66 0.024 0.95 0.024 0.95

Individual b3 0.25 0.25 0.0053 0.047 1.00 0.0059 0.96 0.0056 0.95 0.0062 0.95

* Binary outcomes were generated from a logistic regression model including three binary covariates: a provider-level covariate, a neighborhood-

level covariate, and an individual-level covariate.

y J is the number of providers, K is the number of neighborhoods, r(j) is the standard deviation of the provider-specific random effects, and r(k)
is the standard deviation of the neighborhood-specific random effects.

z SE, standard error; CI, confidence interval.
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clustering only on provider makes inference on the neigh-
borhood covariate grossly incorrect. The parallel is observed
when clustering only on neighborhood, where the average
variance estimated for the coefficient of the provider covar-
iate, b1, is 0.0056, while the true sampling variance is ap-
proximately fivefold greater (i.e., 0.0291). Scenario 1 shows
that, for valid inference on person, provider, and neighbor-
hood covariates, a method that accounts for both provider
and neighborhood clustering is necessary.

The results of the simulations in table 1 suggest that the
proposed standard error estimator provides approximately
correct inference for a range of plausible scenarios. For ex-
ample, confidence interval coverage of the proposed estimator
is between 93 percent and 95 percent for the situations con-
sidered, while naı̈ve methods that do not adjust standard errors
or correct for only one level of clustering yield confidence
interval coverage ranging from 42 percent (for the neighbor-
hood covariate in scenario 3 where we cluster on provider
only, but in reality correlation is purely within-neighborhood)
to 100 percent for naı̈ve estimates of individual-level effects.

APPLICATION

In this section, we demonstrate use of our proposed
approach to adjust for correlation within multiple levels
of clustering when estimating the influence of woman, ra-
diologist, and facility factors on the positive predictive
value (PPV) of screening mammography. Mammography out-
comes are clustered within women, radiologists, and facil-
ities, and these clusters are not necessarily nested, because
women may go to different facilities and because mammo-
grams taken on the same woman may be read by different
radiologists. In addition, radiologists often interpret mammo-
grams at more than one facility. Data were collected by the
Breast Cancer Surveillance Consortium (http://breastscreening.
cancer.gov), a National Cancer Institute-sponsored collabo-
ration among seven population-based mammography regis-
tries in the United States (15). Each registry prospectively
collects demographic, risk-factor, and clinical information
each time a woman receives a mammogram at a participa-
ting facility. Mammography registries link to regional or
state cancer registries and pathology databases to determine
cancer status. This study includes mammograms from four
of the seven Breast Cancer Surveillance Consortium mam-
mography registries: Group Health Cooperative in western
Washington, New Hampshire Mammography Network, San
Francisco Mammography Registry, and the Vermont Breast
Cancer Surveillance System. Each registry has approval from
its institutional review board to collect these data for research
purposes.

Our analytical goal is to estimate the influence of woman-,
radiologist-, and facility-level characteristics on the PPV of
screening mammography. We include three woman-level
factors previously shown to influence mammography per-
formance: age, mammographic breast density, and time since
previous mammography (16, 17). In addition, we include the
radiologist average annual volume of mammography inter-
pretation and the rural/urban makeup of the facility’s popu-
lation of patients. Previous studies have found conflicting
results for the effect of radiologist volume on interpretive per-

formance (18–20), and determining the effects of reader vol-
ume on interpretive performance was listed as a priority in the
recently released Institute of Medicine report on improving
breast-imaging quality standards (21). No previous studies
have examined differences in mammography performance
by urban/rural location of the facility.

We offer the following statistical model. PPV is estimated
from mammograms with a positive assessment (i.e., those
recalled for additional workup). Thus, we included all mam-
mograms given a BI-RADS (22) assessment of 0, 4, 5, or
3 with a recommendation for immediate follow-up. Let Di

represent breast cancer status for the ith mammogram, such
that Di ¼ 1 if the mammogram was associated with a di-
agnosis of invasive carcinoma or ductal carcinoma in situ
within 1 year; i ¼ 1; . . . ;N. We model the marginal proba-
bility of breast cancer given a positive assessment as a func-
tion of a p 3 1 vector of covariates Xi using logistic
regression (23):

logitPðDi¼ 1jXiÞ¼ b0 þb1Xi1 þ . . .þbpXip:

We fit this logistic regression model assuming independent
observations (naı̈ve model) and using the proposed GEE
strategy to adjust for correlation within women, radiologists,
and facilities. All models are additionally adjusted for mam-
mography registry; however, results by registry are not shown
for confidentiality reasons.

RESULTS

Of the 584,784 screening mammograms performed from
1998 to 2002, 62,226 mammograms (10.6 percent) on 57,015
women were recalled for additional workup by 169 radiol-
ogists at 56 facilities (table 2). Among these recalled mam-
mograms, 2,531 were associated with breast cancer within
the 1 year, resulting in a crude PPV of 4.1 percent. The ma-
jority of women (92 percent) were recalled on only one
mammogram, 8 percent were recalled on two separate exami-
nations, and less than 1 percent were recalled on three or
more examinations. Radiologists recalled 12–2,233 screening
mammograms (median ¼ 266) with 6–8,798 mammograms
recalled from each facility (median ¼ 695).

Based on the raw data (table 2), the PPV of screening
mammography increases with age. PPV is lower for women
without a previous mammogram and for women with denser
breasts. PPV is highest for radiologists who interpreted an
average of more than 4,000 mammograms per year. There
are no clear trends between PPV and urban/rural makeup of
the facility’s population of patients.

Table 3 displays the influence of covariates on the odds of
breast cancer given a positive assessment, adjusted for other
covariates in the table and mammography registry, along
with 95 percent confidence intervals estimated from the
naı̈ve (unadjusted) model and models adjusting for correla-
tion within women only, radiologists only, facilities only,
and all three levels of clustering. As expected, the odds of
having breast cancer following a positive mammogram are
significantly higher among older women and among women
screened 3 or more years prior relative to those screened
more recently. The PPV is higher for women with denser
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breasts, but this is not statistically significant. Although
women with denser breasts are at higher risk of breast can-
cer (24), mammography is also less accurate in these women
(16, 25), which would lower the PPV. Radiologists who in-
terpret more than 4,000 mammograms a year have signifi-
cantly higher PPV relative to most other volume groups;
however, in general, the relation between interpretive vol-
ume and PPV is not monotonic. PPV is lower for facilities
with less than 50 percent of their patients from rural areas,
but this is not statistically significant after adjusting for cor-
relation within clusters.

In general, if covariates vary only between clusters, var-
iance estimates will be larger after adjusting for correlation

within that cluster. For example, when adjusting for corre-
lation within radiologists, we found that the variance esti-
mates for radiologist volume increase compared with the
naı̈ve model. A similar pattern can be seen for the urban/
rural makeup of the facility when adjusting for correlation
within facilities. In contrast, if a covariate varies only within
clusters (all clusters have outcomes measured for all levels
of the covariate such as in cross-over trials), the correspond-
ing variance estimate will decrease after adjustment. There
are no covariates that vary only within clusters in this study.
When covariates vary both within and between clusters, as
is the case here when considering all three levels of cluster-
ing, it is difficult to determine a priori if adjustment for

TABLE 2. Characteristics of women, radiologists, and facilities and raw (unadjusted) estimates of positive

predictive value*

Total no. %
No.

recalled
Recall
ratey

No. of
cancers
among
recalled

Positive
predictive
value

Total no. 587,784 62,226 10.6 2,531 4.1

Woman’s age (years)

40–44 92,872 15.8 12,014 12.9 181 1.5

45–49 102,334 17.4 12,399 12.1 307 2.5

50–54 110,654 18.8 12,162 11.0 394 3.2

55–59 82,426 14.0 8,380 10.2 391 4.7

60–69 116,503 19.8 10,596 9.1 684 6.5

70–79 82,995 14.1 6,675 8.0 574 8.6

Woman’s mammographic breast density

Almost entirely fat 44,118 7.5 2,102 4.8 99 4.7

Scattered fibroglandular densities 264,715 45.0 23,955 9.0 1,084 4.5

Heterogeneously dense 235,611 40.1 30,689 13.0 1,174 3.8

Dense 43,340 7.4 5,480 12.6 174 3.2

Woman’s time since previous mammography

No previous mammography 33,180 5.6 5,792 17.5 174 3.0

1–2 years 490,347 83.4 47,863 9.8 1,981 4.1

�3 years 64,257 10.9 8,571 13.3 376 4.4

Radiologist’s average annual volume of
mammogram interpretations

481–750 15,350 2.6 1,378 9.0 57 4.1

751–1,000 34,282 5.8 3,961 11.6 151 3.8

1,001–1,500 165,457 28.2 19,614 11.9 702 3.6

1,501–2,500 208,343 35.5 19,989 9.6 854 4.3

2,501–4,000 76,026 12.9 9,468 12.5 317 3.3

>4,000 88,326 15.0 7,816 8.8 450 5.8

% of facility’s patients that live in rural area

0–24 213,787 36.4 22,862 10.7 1,048 4.6

25–49 152,294 25.9 17,913 11.8 648 3.6

50–74 169,816 28.9 17,332 10.2 644 3.7

75–100 51,887 8.8 4,119 7.9 191 4.6

* The data used to illustrate the authors’ proposed analytical approach are from the Breast Cancer Surveillance

Consortium begun in 1994 (http://breastscreening.cancer.gov).

yNumber recalled per 100 mammograms.
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correlation will result in smaller or larger variance esti-
mates. However, comparing the confidence interval widths
in table 3 reveals some clear patterns. Adjusting for corre-
lation within women had little to no effect on the confidence
intervals. Perhaps this is because there are few observations
per woman, with most women contributing only a single
observation. Adjusting for correlation within radiologists
and facilities had a small and inconsistent effect on the

woman-level covariates but considerably widened the con-
fidence intervals for radiologist and facility factors, which
tend to vary more between than within radiologists and
facilities. For example, the odds ratio comparing radiolo-
gists with an annual interpretive volume of 2,501–4,000 with
those with a volume of greater than 4,000 has a confidence
interval of 0.51, 0.72 using naı̈ve methods. Clustering only
on radiologist yields a 1.7-fold wider confidence interval of

TABLE 3. Influence of covariates on the odds of disease given a positive mammogram and 95%

confidence intervals from the naı̈ve (unadjusted) model and generalized estimating equation models that

adjust for correlation within women only, radiologists only, facilities only, and all clusters (women,

radiologists, and facilities)*

Odds
ratioy

95% confidence intervals

Naı̈ve

Generalized estimating equation

Woman
only

Radiologist
only

Facility
only

Woman,
radiologist,
and facility

Woman’s age (years)

40–44 0.16 0.16 0.13, 0.19 0.13, 0.19 0.13, 0.19 0.13, 0.18

45–49 0.27 0.27 0.23, 0.31 0.23, 0.31 0.23, 0.31 0.23, 0.31

50–54 0.36 0.36 0.31, 0.41 0.31, 0.41 0.30, 0.42 0.30, 0.43

55–59 0.53 0.53 0.46, 0.60 0.46, 0.60 0.45, 0.61 0.46, 0.60

60–69 0.74 0.74 0.66, 0.83 0.66, 0.83 0.65, 0.83 0.63, 0.86

70–79 Referent

Woman’s mammographic
breast density

Almost entirely fat 0.82 0.63, 1.06 0.64, 1.06 0.63, 1.07 0.66, 1.02 0.65, 1.03

Scattered densities 0.89 0.75, 1.05 0.75, 1.05 0.73, 1.08 0.74, 1.07 0.75, 1.06

Heterogeneously dense 0.91 0.77, 1.08 0.77, 1.08 0.74, 1.12 0.77, 1.08 0.77, 1.08

Dense Referent

Woman’s time since previous
mammography

No previous mammography 0.85 0.70, 1.02 0.70, 1.03 0.68, 1.07 0.67, 1.08 0.67, 1.08

1–2 years 0.77 0.68, 0.86 0.68, 0.86 0.68, 0.86 0.67, 0.88 0.67, 0.88

�3 years Referent

Radiologist’s average annual
volume of mammogram
interpretations

481–750 0.64 0.48, 0.86 0.48, 0.86 0.42, 0.97 0.40, 1.02 0.41, 1.00

751–1,000 0.60 0.49, 0.74 0.49, 0.74 0.42, 0.86 0.40, 0.91 0.39, 0.92

1,001–1,500 0.60 0.51, 0.70 0.51, 0.70 0.45, 0.80 0.42, 0.86 0.42, 0.87

1,501–2,500 0.73 0.63, 0.85 0.63, 0.85 0.56, 0.97 0.53, 1.02 0.53, 1.02

2,501–4,000 0.61 0.51, 0.72 0.51, 0.72 0.46, 0.81 0.41, 0.89 0.42, 0.89

>4,000 Referent

% of facility’s patients that live in
rural area

0–24 0.79 0.64, 0.97 0.64, 0.97 0.57, 1.08 0.54, 1.13 0.54, 1.15

25–49 0.71 0.59, 0.86 0.59, 0.86 0.53, 0.97 0.51, 1.00 0.50, 1.01

50–74 0.92 0.78, 1.10 0.78, 1.10 0.71, 1.21 0.65, 1.32 0.65, 1.32

75–100 Referent

* The data used to illustrate the authors’ proposed analytical approach are from the Breast Cancer Surveillance

Consortium begun in 1994 (http://breastscreening.cancer.gov).

yOdds ratios are adjusted for the other covariates in the table plus mammography registry.
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0.46, 0.81, while clustering on woman, radiologist, and fa-
cility yields a 2.2-fold wider confidence interval of 0.42,
0.89. Similarly, for the urban/rural makeup of the facility,
the odds ratio comparing facilities with less than 25 percent
rural patients compared with those with 75 percent or more
rural patients has a confidence interval of 0.64, 0.97 using
naı̈ve methods. Clustering on all three levels yields a 1.8-
fold wider confidence interval of 0.54, 1.15, which includes
the value of 1.0.

DISCUSSION

In this paper, we describe a simple GEE method that
accounts for correlation within multiple nonnested clusters
when fitting marginal generalized linear models. The ap-
proach relies on a working independence assumption cou-
pled with a multistep method for obtaining empirical standard
errors using standard software. These corrected standard errors
may be used to calculate confidence intervals and to conduct
Wald hypothesis tests. Sample SAS and STATA code for im-
plementing the GEE approach with two levels of clustering
is included in Appendix A. Extensions to three clusters are
straightforward.

The proposed GEE method relies on empirical covariance
estimates. When the number of clusters is small (<50 clus-
ters), these estimates may be biased. In our simulations, we
explored the use of a simple approach that scales the variance
estimates to correct for this small-sample bias. This correc-
tion has been found to perform well (13) and is easy to apply
when using our proposed approach for nonnested clusters.

Both the simulations and the application demonstrate the
importance of accounting for the correlation within all lev-
els of clustering for proper inference. Accounting for clus-
tering within only one level could lead to biased variance
estimates for factors measured at other levels and possibly
even factors measured at the level of clustering accounted
for, depending on how the factor varies within and between
the other unacknowledged clusters. When covariates vary
both within and between clusters, as is typically the case when
there are multiple levels of clustering, it is difficult to deter-
mine a priori how adjustment for correlation within clusters
will influencevariance estimates. In some cases, such as for the
woman-level factors and the accuracy parameters estimated
in the application, adjustment may not lead to important dif-
ferences, while in other cases, factors found to be highly sig-
nificant without adjustment may lose statistical significance
after proper adjustment for clustering. This was found in the
application when testing the influence of the facility’s urban/
rural makeup on PPV. Given this potential for biased infer-
ence, it is important to report variance estimates and hypoth-
esis tests that adjust for all levels of clustering or to conduct
a sensitivity analysis to ensure that results are not biased
by unacknowledged clustering within the data.
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APPENDIX A

Below is sample SAS code to fit a logistic regression model to a binary outcome Y, adjusting for the correlation within two
nonnested clusters using GEEs. Note that the clustering variable C1C2ID may be created by concatenating C1ID and C2ID in
a data step using the command ‘‘C1C2ID ¼ C1ID k ‘j’ k C2ID;’’.

%macro gee(n¼1,cluster¼C1);

proc genmod data¼a descending;

class &cluster;

model y ¼ x/dist¼binomial;

repeated subject¼&cluster/type¼indep ecovb;

ods output GEEEmpPEst¼beta GEERCov¼V&n;

quit;

%mend;

%gee(n¼1,cluster¼C1ID);

%gee(n¼2,cluster¼C2ID);

%gee(n¼3,cluster¼C1C2ID);

The covariance matrices may be read into PROC IML to combine and to calculate the corrected standard errors for the
regression coefficients:

proc iml;

use V1; read all var{rowname}; read all var(rowname) into V1; close V1;

use V2; read all var(rowname) into V2; close V2;

use V3; read all var(rowname) into V3; close V3;

V¼V1þV2�V3; SE¼sqrt(vecdiag(V)); print SE;

Below is the corresponding STATA code to fit the same model. Note that the standard errors from STATA will be slightly
larger than those from SAS, because STATA scales the robust covariance matrix to improve coverage probabilities (http://
www.stata.com/support/faqs/stat/gee.html). For logistic regression models, STATA multiples the covariance matrix by K= K � 1ð Þ,
where K is the number of clusters.

xtgee y x, family(bin) link(logit) corr(ind) robust i(C1ID)

mat V1¼e(V)

xtgee y x, family(bin) link(logit) corr(ind) robust i(C2ID)

mat V2¼e(V)

xtgee y x, family(bin) link(logit) corr(ind) robust i(C1C2ID)

mat V3¼e(V)

mat V¼V1þV2�V3
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Other matrix functions may be performed on the covariance matrix V using STATA. For example, the vector of estimated
variances can be obtained by selecting the diagonal elements of the covariance matrix using the command ‘‘mat var¼vecdiag(V)’’
and printed using the command ‘‘matlist var.’’

APPENDIX B

The GEE approach to more than two levels of clustering is described below. GEE using working independence solves the
estimating equation

XN
i¼1

D
T
i V

�1
i ðYi�liÞ¼ 0;

where Di ¼ @li/@b, and Vi ¼ variance(YijXi). Based on results of Mayer Hamblett and Self (26) and Lumley and Mayer
Hamblett (27), the solution to the estimating equations, b̂, has an asymptotic variance given as

varianceðb̂Þ¼A
�1

BA
�1

A¼
XN
i¼1

D
T
i V

�1
i Di

B¼ variance
XN
i¼1

Ui

 !
;

where Ui ¼ DT
i V

�1
i ðYi � liÞ: A consistent estimate of B can be obtained using

B̂¼
XN
i¼1

XN
j¼1

dði; jÞ �UiU
T
j ;

where d(i, j) ¼ 1 if observations Yi and Yj share C1, C2, or C3. The indicator d(i, j) can be viewed as a logical ‘‘or’’ operator that
captures the same cluster 1 or the same cluster 2 or the same cluster 3, and as such can be represented as:

dði; jÞ¼ d1ði; jÞþd2ði; jÞþd3ði; jÞ�d1ði; jÞd2ði; jÞ�d1ði; jÞd3ði; jÞ�d2ði; jÞd3ði; jÞþd1ði; jÞd2ði; jÞd3ði; jÞ;
where dk(i, j) ¼ 1 if both Yi and Yj come from the same cluster Ck and 0 otherwise.

This representation shows that the estimate B̂ can be formed from seven contributions:

B̂¼ B̂1 þ B̂2 þ B̂3 � B̂12 � B̂13 � B̂23 þ B̂123

B̂k ¼
XN
i¼1

XN
j¼1

dkði; jÞUiU
T
j ; k¼ 1;2;3

B̂12 ¼
XN
i¼1

XN
j¼1

d1ði; jÞd2ði; jÞUiU
T
j

B̂13 ¼
XN
i¼1

XN
j¼1

d1ði; jÞd3ði; jÞUiU
T
j

B̂23 ¼
XN
i¼1

XN
j¼1

d2ði; jÞd3ði; jÞUiU
T
j

B̂123 ¼
XN
i¼1

XN
j¼1

d1ði; jÞd2ði; jÞd3ði; jÞUiU
T
j :

By use of working independence, the final estimated variance for b̂ is simply a linear combination of variance estimates
produced by GEEs:
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varðb̂Þ¼ A
�1

BA
�1

¼ðA�1
B1A

�1ÞþðA�1
B2A

�1ÞþðA�1
B3A

�1Þ
�ðA�1

B12A
�1Þ�ðA�1

B13A
�1Þ�ðA�1

B23A
�1Þ

þðA�1
B123A

�1Þ
¼V

1 þV
2 þV

3 �V
12 �V

13 �V
23 þV

123
;

where Vk is the estimated variance from a working independence GEE clustering on Ck. V
kl clusters on unique combinations of

Ck and Cl, and V123 clusters on unique combinations of C1, C2, and C3.

Marginal Modeling of Nonnested Multilevel Data 463

Am J Epidemiol 2007;165:453–463


