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Evaluation of Old and New Tests of Heterogeneity in Epidemiologic
Meta-Analysis

Bahi Takkouche,1 Carmen Cadarso-Suarez,2 and Donna Spiegelman3

The identification of heterogeneity in effects between studies is a key issue in meta-analyses of observational
studies, since it is critical for determining whether it is appropriate to pool the individual results into one summary
measure. The result of a hypothesis test is often used as the decision criterion. In this paper, the authors use a
large simulation study patterned from the key features of five published epidemiologic meta-analyses to
investigate the type I error and statistical power of five previously proposed asymptotic homogeneity tests, a
parametric bootstrap version of each of the tests, and T2-bootstrap, a test proposed by the authors. The results
show that the asymptotic DerSimonian and Laird Q statistic and the bootstrap versions of the other tests give
the correct type I error under the null hypothesis but that all of the tests considered have low statistical power,
especially when the number of studies included in the meta-analysis is small (<20). From the point of view of
validity, power, and computational ease, the O statistic is clearly the best choice. The authors found that the
performance of all of the tests considered did not depend appreciably upon the value of the pooled odds ratio,
both for size and for power. Because tests for heterogeneity will often be underpowered, random effects models
can be used routinely, and heterogeneity can be quantified by means of ft,, the proportion of the total variance
of the pooled effect measure due to between-study variance, and CVB, the between-study coefficient of
variation. Am J Epidemiol 1999; 150:206-15.
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Heterogeneity between studies occurs when differ-
ences in study results for the same exposure-disease
association cannot be fully accounted for by sampling
variation. In meta-analysis, identifying and properly
accounting for heterogeneity between studies is a critical
step in the meta-analytic process. It involves a decision
about whether one should pool individual results into
one summary measure or present separate results for
subgroups only. Heterogeneity in epidemiology origi-
nates from differences in study design, disease defini-
tion, and exposure assessment, inclusion of different
covariates, and demographic variability in study popula-
tions (1,2). Statistical criteria have been used to decide
whether heterogeneity exists in a particular meta-
analysis and, thus, whether it is meaningful to pool the
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results from individual studies into one common estima-
tor. Hypothesis testing is the most popular of these meth-
ods, but a graphic approach has also been proposed (3).
Others recommend that meta-analyses always use ran-
dom effects models and thus include an estimate of the
between-study variability regardless of the results of any
test for heterogeneity (4). The null hypothesis for these
tests assumes that there is no heterogeneity between the
individual study outcomes, i.e., that the results are a ran-
dom sample from one universe of results.

The limitations of hypothesis testing are well known
to epidemiologists, and testing in a meta-analysis does
not pose an exception to these drawbacks (5). The
main problem is that the results of the test—and, by
extension, the decision process following—are a func-
tion of both the magnitude of the effect that is tested
and the sample size. In epidemiologic meta-analysis,
the sample size within individual studies is typically
large but the number of studies is relatively small (gen-
erally less than 30). Tests use the individual study as
the statistical unit of observation. Thus, they are often
based on a small sample size and may have low power
against the alternative hypothesis of heterogeneity as a
result.

In this paper, we compare the type I error rates and
statistical power of several tests of heterogeneity that
can be used in meta-analysis. We review and describe
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the tests that have been publicized in the statistical and
epidemiologic literature. We then summarize several
key features of five meta-analyses of observational
studies published recently in peer-reviewed journals.
We conducted a large simulation study with a design
based on the range of the key features of these meta-
analyses. The aim of the simulation study was to com-
pare the behavior of five tests, both in their asymptotic
versions and in a bootstrap version that we developed.
Since it is by far the most frequent situation, we
restricted our study to the tests of heterogeneity that
can be used in a multivariate setting and for which no
raw data within individual studies are needed. We con-
clude this paper with some proposed alternatives to
hypothesis testing for evaluating heterogeneity in epi-
demiologic meta-analyses.

THE MODELS AND THE TEST STATISTICS

The two primary models used in meta-analysis to
obtain a pooled point and interval estimate of effect are
the fixed effects model and the random effects model.
A third approach, the mixed effects model, is an exten-
sion of the random effects model (6). The fixed effects
model assumes that the 5 individual studies to be meta-
analyzed are the universe of interest. On the contrary,
the random effects model assumes that the S studies to
be meta-analyzed are a random sample of a hypotheti-
cal universe of studies of the same risk factor-disease
relation that will be published in the future or have
already been published in unknown journals (7). The
models are described below. The fixed effects model is

P, = P + e,

and the random effects model is

P, = P + b, + es,

where E(bs) = E(es) = 0, var(fcj = x2, and varfo) =
G2

Wj. p\ is the estimate of effect from study s, its vari-
ance is a2

w<s under the fixed effects model or (O2
Wj +12)

under the random effects model, and s = 1, ..., 5.
The variance of e is a function of the number of sub-

jects included and other features of the individual study
design. The variance of b is x2, the between-study vari-
ance. The fixed effects model is a particular case of the
random effects model, where x2 is 0. Homogeneity tests
focus on the null hypothesis, Ho: x2 = 0, and, if this
hypothesis is believed to be true, a pooled estimate is
computed under the fixed effects model. The random
effects model can be used regardless of the result of any
hypothesis test. Under this model, the point estimate of

the pooled effect measure and its confidence interval
incorporate the additional variability due to between-
study variance. This yields confidence intervals that are
wider than those in the fixed effects model.

Several tests have been used in meta-analytic set-
tings in epidemiology to address heterogeneity. Mantel
and Haenszel (8) and Yusuf et al. (9) have proposed
heterogeneity tests that require the raw cell counts
and/or do not generalize to a multivariate setting.
Since in meta-analysis of observational studies an
adjusted estimate of the relative risk is the only valid
option, these tests are generally not applicable for epi-
demiology and will not be considered further here. In
addition, we restrict this article to the study of
between-study heterogeneity in the relative risk and
odds ratio. Risk differences are beyond the scope of
this paper and will not be considered.

DerSimonian and Laird's Q test

The heterogeneity test described by DerSimonian
and Laird (10) was previously proposed and discussed
by Cochran (11). However, to avoid confusion and
because this test is more often known by the name of
the former authors, in this paper we refer to it as
DerSimonian and Laird's Q test. It is by far the most
popular of the heterogeneity tests used in meta-analysis
in epidemiology. This noniterative test statistic consists
of a weighted sum of squared deviations around the
mean of the effect in each study, i.e.,

Q =

where (3 is the weighted mean of the effects of each
study (i.e., P = "2WS$S/1L,WS) and the weights ws (s =
1, ..., 5) are the inverse of the estimated variance of
each individual study s (i.e., ws = [var(PJ]~1). Under
the null hypothesis, Q has a yj distribution with 5 - 1
degrees of freedom (df), where 5 is the total number of
studies, provided that each individual study has a sam-
ple size that is large compared with the number ôf
studies and provided that var(ps) is independent of pY

— WLS

Z2
WLS (WLS, weighted least squares) is a test statis-

tic proposed in a recent paper by Lipsitz et al. (12). It
is a modification of DerSimonian and Laird's Q statis-
tic. The statistic is

WLS = (Q ~ S + lf/2(S - 1).

Under the null hypothesis, Z2
WLS has an F distribution

with 1 and S - 1 df, if both the within-study sample

Am J Epidemiol Vol. 150, No. 2, 1999



208 Takkouche et al.

sizes and the number of studies are large. Further
details on the derivation of this test and the two that fol-
low are given in the paper by Lipsitz et al. (12). Since
these tests have been newly proposed, meta-analysts
need guidance as to when these tests may provide
improved performance over Q.

WLS.R

The Z2
WLsfR

 t e s t was also derived from DerSimonian
and Laird's Q statistic by Lipsitz et al. (12). It has the
following form:

WLS,R = (fi - - P)7(var(P,) - I)]}2.

The "R" in the subscript is a mnemonic for "robust"
variance estimate. If both 5 and the sample sizes
within studies are large, Z2

WLSR will have a yj distribu-
tion with 5 - 1 df.

T2-bootstrap

We use a parametric bootstrap approximation
(described below) to find the cumulative distribution
function of x2, the estimator of the between-study
variance described by DerSimonian and Laird (10),
where

x2 = max{O,[0 - (5 -

We reject the null hypothesis of homogeneity if the
bootstrapped empirical fifth percentile is greater than
0, the null value of x2, and we fail to reject the null
hypothesis if the bootstrapped empirical fifth per-
centile is 0. Because x2 is bounded on the left by 0, a
one-sided hypothesis test is the relevant procedure
here. Note that this method does not give us a p value
but rather a yes/no answer only. In addition, it
assumes normality of the random effects and the error
terms.

The Z2
K statistic was also proposed by Lipsitz et al.

(12) and has the form

Z\ = - P)2 - var(p\)]}2/

- P)2 - var(PJ]2.

Under the null hypothesis, this statistic will have an F
distribution with 1 and S - 1 df, if 5 is large. Although
it is rarely of interest in epidemiologic meta-analysis,
notice that it is not necessary that the within-study
sample sizes be large.

The likelihood ratio test

The application of a likelihood ratio test (LRT) sta-
tistic to heterogeneity problems has been described by
Stram and Lee (13). It is the difference between two
iterative statistics, comparing the log likelihood under
the fixed effects model with the log likelihood under
the random effects model, i.e.,

= 2(Lflxed —

where Lflxed and L^don, are the log likelihoods of the
data under the fixed and random effects models,
respectively, assuming a normal distribution for both
the random effects, bs, and the error terms, es,s=l,...,
S. Under the null hypothesis, the statistic is a mixture
of two %2 distributions with 0 df and 1 df, with a mix-
ing parameter of 'A.

Parametric bootstrap versions of the tests

Because the number of studies, 5, is typically small in
epidemiologic meta-analyses, asymptotic distributions
may be poor approximations of the true distribution of
the test statistics. A bootstrap approach may overcome
this drawback. The bootstrap procedure we propose is
as follows. Sample with replacement from the data

(var(p,), ..., var(P5)) 5 points (var(p)(1), ..., var(pT')-

Given P and var(p)(s), s = 1, ..., 5, simulate 5 study

results from the fixed effect distributions N(p, var(p\,)),

s = 1,..., S, to obtain (pV^,.. . , p\*(W)> and calculate the
test statistics, e.g., Q{b). Repeat this procedure B times
to obtain, for example, (£>(1), ..., Qim). Using the
cumulative histogram of the B bootstrapped values of
the statistic under the null hypothesis, calculate the
empirical exceedance probability for the observed
statistic.

In the first runs of our simulations, we carried out
5,000 bootstrap resamples. The results were virtually
the same as when only 1,000 resamples were used.
Thus, we conducted the rest of the simulations with
1,000 bootstrap resamples only. We also smoothed the
distribution function of the B = 1,000 values of the test
statistic to obtain the corresponding bootstrap p values.
Because these more time-consuming results were very
close to those obtained through the simple histogram,
we recommend the latter approach.

A user-friendly Fortran 77 program for obtaining
bootstrapped and asymptotic p values for all test sta-
tistics studied in this paper is available from the second
author (C. C.-S.).

Am J Epidemiol Vol. 150, No. 2, 1999



Heterogeneity in Meta-Analysis 209

EXAMPLES OF META-ANALYSES

We chose five meta-analyses from the literature to
illustrate the tests considered in this paper, and after
which we patterned our simulation study. The choice of
these five meta-analyses was based on several criteria.
We wanted to include recent meta-analyses only, those
published no earlier than 1990 in peer-reviewed jour-
nals, to reflect current practice in handling heterogene-
ity. We chose meta-analyses that covered a range of 5's
and had varying magnitudes of estimated between-
study variance.

The paper by Mortimer et al. (14) is a meta-analysis
of 11 case-control studies that investigated the associ-
ation between head trauma and subsequent
Alzheimer's disease. For comparability reasons, in
their final analysis the authors focused on head injury
with loss of consciousness, which limited the number
of studies to seven. The article by Everhart and Wright
(15) is a meta-analysis of 20 cohort and case-control
studies that investigated the relation between diabetes
of more than 1 year's duration and subsequent occur-
rence of pancreatic cancer. The Gerstein (16) paper is
a meta-analysis of 14 case-control studies that related
early intake of cow's milk to subsequent type I dia-
betes mellitus. Spector and Hochberg's (17) article is a
meta-analysis of six case-control and three cohort
studies that looked for a possible protective effect of
oral contraceptives on the occurrence of rheumatoid

arthritis. As an alternative to hypothesis testing for het-
erogeneity, the authors used the graphic "odd-man-
out" approach (3). The paper by Romieu et al. (18) is
the largest meta-analysis in our series. It contains five
cohort studies and 28 case-control studies on the rela-
tion between oral contraceptives and breast cancer.
The authors presented separate results for each study
design. In order to investigate the ability of the test sta-
tistics to detect obvious between-study heterogeneity,
we computed an overall estimate.

Table 1 displays key features of each of the five
meta-analyses. The five meta-analyses chosen cover a
wide range of numbers of individual studies (from 7 to
33). In an informal review of the literature, we found
that meta-analyses in epidemiology are generally
based on 15-20 individual studies. When authors sus-
pect or find heterogeneity, pooled analyses are then
based on subgroups (e.g., by type of study) of further
reduced sample size.

The average number of cases of disease in the indi-
vidual studies included in these meta-analyses ranged
between 151 and 621. Although this number of cases
is rarely available in meta-analyses, the number of
cases is a good indication of the amount of informa-
tion on which the individual studies were based.
Using the number of subjects included in each indi-
vidual study is misleading, as cohort studies generally
have larger sample sizes than case-control studies but

TABLE 1. Key features of five published meta-analyses used to pattern a simulation study of the
performance of heterogeneity tests

Feature

No. of studies included (S)
Mean no. of cases
Method used for pooling

Pooled odds ratio
p value for Ho: p = 0

SEt(P)/ipi

CVB§

Method used for test of
heterogeneity

Mortimer
et al. (14)

7
151
Not stated

1.70
0.017
0.42
0.00
0.00
0.00

"Interaction
terms not
significant
in logistic
regression"

Everhart and
Wright (15)

20
176
Random
effects

1.61
0.000
0.13
0.1412
0.788
0.65

O

Meta-analysis

Gerstein
(16)

14
205
Random

effects
1.23
0.000
0.26
0.0718
1.307
0.65

Q

Spector and
Hochberg(17)

9
156
Fixed

effects
0.76
0.000
0.28
0.1095
1.222
0.68

X2 (not
specified)

Romieu
etal. (18)

33
621
Random
effects
1.10
0.000
0.20
0.0148
1.256
0.53

O

t SE, standard error.
$ x2, variance between studies (DerSimonian and Lajrd's formula (10)).
§ CVB, between-study coefficient of variation (Vt^/ipi).
U R,, proportion of the total variance due to between-study variance: + (S x var(P))).
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do not always provide more precise estimates of
effect.

The most popular method of pooling results was the
use of DerSimonian and Laird's random effects model
(10). This method was used in three of the meta-
analyses, each of which also tested for homogeneity
using DerSimonian and Laird's method. In one meta-
analysis, the inverse variance weights were used with-
out further details; an unspecified %2 test was used to
test for homogeneity in another. In Mortimer et al.'s
meta-analysis (14), no clear explanation was given on
how heterogeneity was handled, although one may
guess that a 6 df LRT was used.

The pooled estimate of the relative risk was moder-
ate in all five meta-analyses, ranging from 0.76 to
1.70. However, all pooled estimates were statistically
different from the null value. The proportion of total
variance due to_between-study variance (R), where /?7 =
T2/(T2 + S var(P)), was 0 in the smallest meta-analysis
and was substantial and of similar magnitude in the
other four studies, whose Rf's were approximately 60
percent. Another way to quantify heterogeneity is
through the between-study coefficient of variation,
CVB, which is VV/IPI- This measure has the disad-
vantage that it increases rapidly as (3 nears 0 and is
undefined when (3 equals 0. /?; does not have this
drawback, but it has the disadvantage that it increases
as the within-study variances decrease for the same x2.

As table 2 shows, within each meta-analysis, p val-
ues from the different tests differed considerably, lead-
ing to contradictions in the decision process about
rejection or acceptance of the null hypothesis of homo-
geneity. The asymptotic DerSimonian and Laird's Q
test yielded p values that were close to those of its
bootstrap version. Except for Mortimer et al.'s small

meta-analysis (14), the null hypothesis of homogeneity
was rejected by Q in all cases. In general, the concor-
dance in the acceptance/rejection decision at the type I
error rate of 0.05 between an asymptotic test and its
bootstrap version held for every test except ZVLS.R.

which was designed to be adequate when there are
both a large number of studies and large sample sizes
within each study. This test led to conflicting decisions
for two of the five meta-analyses, including Romieu et
al.'s (18), which was based on a relatively large num-
ber of studies. Z2

K in its asymptotic version as well as
in its bootstrap version did not reject the null hypothe-
sis of homogeneity in any of the five cases. The LRT
yielded similar results in its asymptotic and bootstrap
versions, which were close to the result obtained by
the Q test. The x2-bootstrap test results were in accor-
dance with those obtained by Q test and LRT. Because
of these conflicting results, we undertook a simulation
study to better understand the properties of these tests.

SIMULATION STUDY

The objective of the simulation study was to com-
pare the behavior of the statistics Q, Z2^^, ZVLS.R-
Z2

K, and LRT, the bootstrap version of each of these
statistics, and T2-bootstrap. We compared the type I
error rates and statistical power of the tests. All tests
were performed at the nominal level of 5 'percent.
Whenever required, the range of parameters needed by
the simulation study was restricted to that observed in
table 1.

To study both the type I error and power, we needed
to select values for the within-study variance a2

w that
were representative of those found in practice. In order
to obtain plausible values for this parameter for each

TABLE 2. Resulting p values from heterogeneity tests (asymptotic and bootstrap versions) of five
published meta-analyses that were used to pattern a simulation study of the performance of
heterogeneity tests

Test

Q
Q*

72 *
WLS

WLS.R

Z 2 *
WLSRLRTf

LRT*
•^-bootstrap

Mortimer
etal. (14)

0.885
0.885
0.330
0.241
0.180
0.084
0.010
0.048
0.500
0.631

Nonsignificant

Everhart and
Wright (15)

0.000
0.001
0.000
0.000
0.130
0.220
0.016
0.089
0.001
0.000

Significant

Meta-analysis

Gerstein
(16)

0.001
0.001
0.001
0.001
0.084
0.110
0.082
0.203
0.002
0.000

Significant

Spector and
Hochberg (17)

0.002
0.002
0.004
0.016
0.144
0.278
0.071
0.239
0.004
0.000

Significant

Romieu
etal. (18)

0.000
0.001
0.000
0.000
0.304
0.371
0.057
0.013
0.000
0.000

Significant

* Parametric bootstrap version of the test.
t WLS, weighted least squares; LRT, likelihood ratio test.
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value of the effect measure studied, we plotted the
upper bound of the 95 percent confidence interval of
the log relative risk reported by every study included in
the five meta-analyses against the estimate of the log
relative risk. We thus obtained a scatterplot of 83 stud-
ies. Through least squares regression, we fitted the qua-
dratic curve In UB = y0 + Yi0n OR), + y2;(ln OR)/,
where In UB is the logarithm of the upper bound of the
95 percent confidence interval of the relative risk esti-
mate for each individual study and OR (odds ratio) is
the corresponding relative risk estimate. We used the
upper and lower bounds of the 95 percent confidence
interval for this curve to obtain a plausible range of val-
ues for a2 for each value of the effect measure consid-

ered, by solving for the variance of In OR as var(Ps) =
[(lnUB-p)/1.96]2.

Type I error

The null hypothesis of homogeneity of effects is

Ho: PJ = p2 = . . . - p, = : x2 = 0.

The model used was p\, = P + e^ where es ~ N(0, G2
WS),

s - 1, ..., S, and the parameters needed were P, the
measure of effect S, and the within-study variance o2

ws,
s = 1, ..., S. Four different values of P were chosen,
corresponding to odds ratios of 1, 1.5, 2, and 5. Three
values of S were used, 7, 20, and 40, corresponding to
the range of values in table 1. To simulate N meta-
analytic data sets of the form (py'\ var(P5)̂ '̂ ), s = 1, ..., 5
and i = 1, ..., N, where N was fixed at 5,000, we sam-
pled S values of UB from the uniform distribution
bounded by the upper and lower confidence limits of
the quadratic regression curve (described above) of In
UB on p at the given value of p, and solved for
var(pi)

(l), s = 1, ..., S. Under the fixed effects model,
var(Pj) = a2

ws. Thus, P,W,..., P5^ were generated from
the 5 normal distributions with mean P and var($J-l\
and the test statistics from the simulated data
(P/;),..., p5

(/), var(p,)«,..., var(P5)
(l)) were calculated.

The proportion of times in the TV simulations in which
the null hypothesis was rejected is the type I error rate.

Statistical power

Simulations assuming normal distributions. For
power, we used a procedure similar to that used in
the simulation study of type I error. However, under
the alternative hypothesis, to generate ps under the
model

P, = P + b, + es,

Am J Epidemiol Vol. 150, No. 2, 1999

where es ~ N(0, o2
WJ) and bs ~ N(0, x2), x2 was needed.

The variance between studies was used by fixing Rn

the proportion of total variance du£ to variance
between studies, and by using the var(P) correspond-
ing to that observed in the meta-analysis of size S. This
variance between studies is as follows:

x2 = {[R, XSX var(P)]}/(l - *,).

The values of Rt chosen were 0.1, 0.2, 0.25, 0.3, 0.4,
0.5, 0.6, 0.75, 0.8, and 0.9.

Simulations assuming nonnormal distributions. In
general, in epidemiologic research, the sample size
within studies is large and the number of studies S is
relatively small. Hence, under the random effects
model,

p, = p + bs + es.

It is reasonable to assume that es ~ N(0, o2
w s), s= 1, ...,

S. However, the assumption that bs ~ N(0, x2) is more
likely to be violated. To investigate the robustness of
the results obtained to a nonnormality of this nature,
we conducted an additional set of simulations to inves-
tigate the power of the tests. First, we assumed that bs

followed a parametric but asymmetric distribution, the
exponential distribution. Next, we assumed that bs fol-
lowed an empirical distribution estimated from the
data given by the five meta-analyses considered in this
paper.

Exponential case. The exponential case simulation
follows a procedure similar to the one used in the
power simulation explained above. All of the steps are
the same, except that b follows a mean-centered expo-
nential distribution with parameter 1/x. Thus, b has
mean 0 and standard deviation x. As was explained
above, x is obtained by fixing Rf.

Empirical distribution. In addition to the fact that no
parametric distribution is assumed for bs, the simula-
tion procedure in the case of an empirical distribution
differs from the normal and exponential case described
above in that Rr x2, and 5 are not chosen before the
simulation but are intrinsically defined by each of the
five meta-analyses in table 1. The nonparametric sim-
ulation consists of the following steps:

a. From the meta-analytic data set at hand (P.,, var(Pi)),
5 = 1, ..., S, compute PRE = Zw™pyXw,1^, the
weighted mean of the effects under the random
effects (RE) model, where w™ = [var(p5) +_T2]H.

b. For each p\, s = I,..., S compute bs = % — P,^.
c. Create the smoothed cumulative distribution func-

tion Fs of bs.
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d. For each simulation i,i=l, ...,N,do the following:
d.l. For each study s, s = 1, .., S, generate u}'^ from

d.2. Calculate Fs-\u,l{i) = b®.
d.3. Generate e® from N(0, var(Ps)).
d.4. Compute p\(0 = PRE + b® + e,®.

Finally, the test statistics from the simulated data
(P,w,..., p\(0, var(p,),..., var(P,)) are calculated. The
proportion of times in the N simulations in which the
null hypothesis is rejected is the power.

RESULTS

In the studies of both type I error and of power, the
results were virtually identical for every odds ratio
considered. We thus present and discuss only the case
in which the odds ratio is equal to 2.

Type I error

The type I error results are presented in table 3. The
95 percent confidence interval for the nominal level (5
percent) was 4.40 percent-5.60 percent for these 5,000
simulations. Test results that fell outside of this range
are printed in boldface type. Except for the Q statistic,
which performed well in every setting considered, the
asymptotic tests did not give the correct size under the
null hypothesis. This behavior was consistent for all
values of S considered. The worst results were given
by Z2

WLS R, where the type I error rate was always anti-
conservative. The Z2

WLS and LRT statistics, on the con-
trary, were overly conservative, although both
improved as the number of studies included in the
meta-analysis increased. The behavior of the Z2

K sta-
tistic was unpredictable and unacceptable.

The parametric bootstrap approximation of the same
tests yielded good results for Z2

WLS, Z
2 ^ ^ Z 2

r and
LRT. The x2-bootstrap method also gave results that
were in agreement with the correct size. The results of
the bootstrap approximation of Q were worse than

those obtained by the asymptotic version: All of the
sizes exceeded the correct one, and results worsened
with increasing number of studies.

Statistical power

For power, the simulations performed in the expo-
nential setting yielded results that were similar to those
obtained in the normal setting. The simulations carried
out in a nonparametric setting were in accordance with
those obtained in the parametric cases. The departure
from normality (due to a small number of studies) of
relative risk estimates apparently had little effect on
the behavior of the tests. Thus, only the results of
power simulations performed under a normal setting
are shown in table 4 and figure 1.

Although the validity of the new tests suggested by
Lipsitz et al. (12) (Z2

WL?, Z
2
WLSR, and Z2p is question-

able, at least in the settings considered in our simula-
tion study, which mirror the meta-analytic environ-
ment of epidemiology, we proceeded nonetheless with
an evaluation of the power of all of the tests. As
expected, the power increased dramatically as Rf

increased to 1. The power also depended upon 5, for
the same Rr increasing with increasing S, but not as
strongly as the dependency upon Rr The Q statistic
performed better than the other asymptotic test statis-
tics. The LRT and the Z2

WLS statistic exhibited similar
behavior, with results that were slightly worse than
those of the Q test. The performance of these two sta-
tistics was improved by the use of the parametric boot-
strap approach.

Except with large values of Rr the Z2^ statistic had
low power that was even lower in the bootstrap ver-
sion. The behavior of Z2 „. „ was not consistent and

WLo,K

was not improved by the use of the bootstrap
approach. Except for the highest values of Rf and 5,
this test had poor power.

The performance of the T2-bootstrap test was as good
as that of the Q statistic. The results of the simulations
performed in the exponential and distribution-free set-
tings were consistent with the conclusions obtained

TABLE 3.
according

S = 7
S=20
S=40

Type 1 error rates
to the number of

o

4.96
5.16
5.46

2.20§
3.90
4.18

(%) of heterogeneity tests (asymptotic and bootstrap
studies (S) included in the meta-analysist

z2

22.16
13.64
10.10

z\ '
2.62

12.06
9.64

Test

LRT* O*

1.74 6.24
2.10 7.96
3.20 9.24

72 *
*• WLS

5.08
5.12
5.22

versions) obtained

Zz *
Wl&R

4.74
4.84
5.26

z\*

4.80
4.72
4.78

in a simulation

LRT*

4.80
4.70
5.00

study,

T2-bootstrap

4.66
4.82
5.18

* Parametric bootstrap version of the test.
t Odds ratio = 2.
i WLS, weighted least squares; LRT, likelihood ratio test.
§ Values printed in boldface are those for which the error rate was outside of the 95% confidence region.
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TABLE 4. Statistical power (%) of heterogeneity tests (asymptotic and bootstrap versions) obtained in a simulation study,
according to the number of studies (S) included in the meta-analysis and the proportion of total variance due to between-study
variancef

R,§ = 0.25
S = 7
S=20
S=40

R, = 0.5
S = 7
S=20
S=40

R, = 0.75
S = 7
S=20
S=40

O

14.38
25.90
38.12

37.54
70.56
90.88

77.66
98.66

100.0

8.84
20.68
31.20

28.42
64.28
88.20

70.76
98.24

100.0

Z2

WLS.R

13.66
6.18
9.48

6.68
17.82
56.46

5.50
67.54
98.12

1.40
4.58
5.44

0.50
9.06

41.36

0.08
53.60
97.00

LRTt

7.85
17.90
30.64

27.14
64.11
88.61

70.21
97.51
99.93

Test

O*

12.18
24.18
35.10

27.60
58.54
79.76

58.84
93.64
99.64

Z2 *
WLS

14.12
24.12
33.42

37.32
68.10
89.02

77.68
98.46

100.0

72 *
"- Wl&R

2.40
1.22
1.38

1.02
0.32

20.34

0.16
4.76

83.16

z y

2.44
1.24
0.94

1.14
0.26

13.28

0.14
6.06

80.14

LRT*

14.68
25.97
37.81

39.10
69.21
90.21

78.31
99.12
99.94

-̂bootstrap

15.32
24.92
37.94

38.50
68.62
91.14

75.02
98.34
99.94

* Parametric bootstrap version of the test.
t Odds ratio = 2.
X WLS, weighted least squares; LRT, likelihood ratio test.
§ /?,, proportion of the total variance due to between-study variance: TZ / ((T2+ (S X var(p))).

from the normal simulations. However, the exponen-
tial simulations yielded some differences. For Q, the
power figures were 1-19 percent lower than those in
the normal setting. For Q*, on the contrary, the figures
were always higher. For LRT, they were up to 30 per-
cent lower. These differences may seem substantial in
proportion, but since the power even in the normal
simulations is low in most cases considered, this vari-
ation is not meaningful.

DISCUSSION

The results of our simulation study, patterned on the
features of real meta-analyses, indicate that no matter
what the underlying relative risk and number of indi-
vidual studies included in the meta-analysis are, four
out of five asymptotic tests do not give the correct size
under the null hypothesis. The exception was the Q sta-
tistic. Although the Q statistic is strictly appropriate
only when cov(P5, var(PJ) = 0, an assumption which
is violated by binomial data as in these epidemiologic
meta-analyses (19), violation of this assumption did not
have a detectable adverse impact on the validity of the
test in the settings considered. This issue may be more
of a concern for estimation than for testing. On the con-
trary, errors in the decision of whether or not to reject
the null hypothesis of homogeneity of effects through
studies are highly likely for the asymptotic tests, and
these tests should probably not be used in epidemio-
logic meta-analyses.

The parametric bootstrap corrects the poor type I
error rate for all tests for which asymptotic results
were deficient. The surprisingly poor result for the

bootstrapped Q, Q*, and the good result obtained by
Z 2 ^ may be explained by the fact that Z 2 ^ * is close
to a studentized version of Q*. In a bootstrap context,
a studentized variable is one in which we subtract the
original statistic from the bootstrap statistic and divide
by the standard error of the bootstrap statistic (20). A
"true" studentized Q would be Q* minus Q divided by
the standard error of Q*. Bootstrap experts recom-
mend the use of studentized quantities to improve
results (20, p. 324). To confirm this, we recalculated
the type I error rates in the simulations for the "true"
studentized Q and obtained values for 5 = 7, 5 = 20,
and S = 40 of 4.89 percent, 4.92 percent, and 5.27 per-
cent, respectively, as expected. However, since the
type I error rate is correct for the asymptotic version of
Q, the bootstrap version is unnecessary.

The results of the power simulations show that for
small values of Rr no test has a satisfactory power of,
for example, 80 percent. It may thus be deceptive to
use any homogeneity test when the proportion of
between-study variance is lower than 0.4, as long as 5 <
40. For values of /?; that range between 0.4 and 0.75,
one needs to consider the value of 5 in deciding
whether the test will perform satisfactorily. Small
meta-analyses (of less than 10 studies, approximately)
will still have unsatisfactory power in this range, but
performing a test in a larger meta-analysis may be rea-
sonable. The same careful attention is needed in situa-
tions where Rt is large (>0.75) and the number of stud-
ies is moderate.

In summary, this exercise generated both good news
and bad news. The good news is that the Q test is
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FIGURE 1. The statistical power of heterogeneity tests (asymptotic and bootstrap versions) in meta-analysis as a function of the proportion of
total variance due to between-study variance (f?,) and the number of studies (S) included in the meta-analysis (odds ratio = 2). (WLS, weight-
ed least squares; LRT, likelihood ratio test). Key: —, S = 40 (bootstrap); —, S = 40 (asymptotic); , S = 20 (bootstrap); , S = 20 (asymp-
totic); , S = 7 (bootstrap); , S = 7 (asymptotic).
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clearly the best from the point of view of size, power,
and computational simplicity. Although the LRT and
the x2-bootstrap test have statistical properties that are
nearly as good, both are relatively complex computa-
tionally. In addition, x2-bootstrap has the drawback that
it does not provide a numerical p value, and both of
these tests impose normality assumptions that are
empirically difficult to verify. The new tests proposed
by Lipsitz et al. (12) are not useful in epidemiologic
meta-analyses.

The bad news is that for the typical "sample sizes"
seen in epidemiologic meta-analysis, no available test
has acceptable power, unless heterogeneity is quite
pronounced {R[ > 0.75). Because these tests often
falsely fail to detect true heterogeneity, it may be
advisable to use random effects models routinely, as
suggested by the National Research Council (4). Since
the results of hypothesis tests are a function of sample
size and other arbitrary design features, in other
instances they may reject the null hypothesis when the
magnitude of the differences is very small and sub-
stantively inconsequential. In this case, when there are
many studies included in the meta-analysis (e.g., S >
100), these tests may reject the null hypothesis with a
very small degree of between-study heterogeneity. In
either the possibly underpowered case or the overpow-
ered case, heterogeneity can be jointly quantified by /?,
and CVB, and mixed effects regression models can be
used to investigate and adjust for identifiable sources
of heterogeneity when Rt and CVfl indicate that the
magnitude of the between-study heterogeneity is suffi-
ciently large (21).

These results show that the asymptotic DerSimonian
and Laird Q statistic and the bootstrap versions of the
other tests give the correct type I error under the null
hypothesis but that all of the tests considered have low
statistical power, especially when the number of stud-
ies included in the meta-analysis is small (<20). From
the point of view of validity, power, and computational
ease, the Q statistic is the best choice. However, in
addition to the application of statistical techniques,
common sense and a priori biologic knowledge, to the
extent that it exists, must be vigilantly utilized when
synthesizing the results of many studies.
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