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■ Abstract Multilevel statistical models have become increasingly popular among
public health researchers over the past decade. Yet the enthusiasm with which these
models are being adopted may obscure rather than solve some problems of statistical
and substantive inference. We discuss the three most common applications of multilevel
models in public health: (a) cluster-randomized trials, (b) observational studies of the
multilevel etiology of health and disease, and (c) assessments of health care provider
performance. In each area of investigation, we describe how multilevel models are
being applied, comment on the validity of the statistical and substantive inferences
being drawn, and suggest ways in which the strengths of multilevel models might be
more fully exploited. We conclude with a call for more careful thinking about multilevel
causal inference.

INTRODUCTION

Over the past decade, interest in multilevel statistical models has increased dramat-
ically in public health. This is evidenced not only by the proliferation of published
articles in which multilevel modeling techniques are used, but also by the growing
number of books (52, 62, 66, 78, 84, 87, 107, 118, 141) on the subject, as well as by
the appearance of numerous invited commentaries and review articles (1, 18, 20,
21, 22, 26, 28, 33, 70, 76, 111, 114, 123, 124, 126, 140, 142, 149) addressing this
topic in public health and social scientific periodicals. As Mason (92) observed
several years ago, however, the diffusion of a new statistical methodology within
any field of study follows a predictable pattern: Overzealous early adopters tout
the method as a panacea, whereas critics charge that it offers nothing new to the
field. Ultimately, this process is resolved only when the legitimate advantages and
limitations of the novel methodology become widely recognized. The methodol-
ogy then finds its rightful place within the field’s “armamentarium” (92, p. 221).
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Such a process now appears to be well underway with multilevel statistical models
in public health.

In this review, we attempt to accelerate Mason’s diffusion process by presenting
a critical discussion of the ways in which public health investigators have used
multilevel models. For many types of data and a wide range of research questions,
multilevel models provide a stronger basis for statistical inference than traditional,
single-level models. Like any technology, however, multilevel models have their
limitations. Our goal here is to identify both the advantages and the limitations of
multilevel models, distinguishing the inferences that are strengthened by their use
from those that are not.

After first introducing the terminology and notation to be used throughout the
review, we identify three sets of questions to which public health investigators have
applied multilevel models. These questions address (a) the effects of group-level
interventions, (b) the multilevel etiology of health outcomes, and (c) the relative
performance of health service providers. For each set of questions, we show how
multilevel models are being applied, comment on the validity of the interpreta-
tions and inferences that are being drawn, and provide suggestions about how the
strengths of multilevel data analysis might be more fully exploited. We conclude
with a call for more sophisticated thinking about multilevel causal inference.

SOME SIMPLE MULTILEVEL MODELS

Suppose that we wish to study variations in body mass index (BMI) among young
adults, focusing on sex differences and differences related to the presence or ab-
sence of fast-food restaurants in individuals’ neighborhoods. We letYi j denote the
BMI of the ith person living in thejth neighborhood. To begin our analysis, we
assume that within each neighborhood BMI follows a normal distribution with
a neighborhood-specific mean,β0j, and a variance,σ 2. Furthermore, we assume
that the neighborhood-specific means themselves vary according to a normal dis-
tribution with meanγ 00 and varianceτ 00. These simple assumptions lead to the
following two-level model:

Yi j = β0 j + ri j 1a.

β0 j = γ00+ u0 j 1b.

r i j
i∼ N(0, σ 2); u0 j

i∼ N(0, τ00); cov(ri j , u0 j ) = 0. 1c.

Equation 1a represents the variability of BMI within each neighborhood and is
called the level-1 model, whereas Equation 1b represents the variability between
neighborhoods and is called the level-2 model. The expressions in 1c constitute the
variance-covariance structure of the model, and the symbol

i∼ should be read as
“are independent and take the following distribution.” We can substitute Equation
1b into Equation 1a to obtain the combined model

Yi j = γ00+ u0 j + ri j , 2.
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with the same variance-covariance structure as given in Equation 1c. This model,
which incorporates no covariates, is identical to a one-way random effects analysis
of variance. It is often used to partition variation into two levels. Note that the total
variance ofYi j is σ 2+ τ 00, whereas the between-neighborhood component of this
variance is simplyτ 00. This leads to the following expression for the intraclus-
ter correlation coefficient, which represents the proportion of variability in BMI
occurring between, rather than within, neighborhoods:

ρ = τ00

σ 2+ τ00
. 3.

As a next step in our investigation, we introduce a level-1 covariate,Xi j , which
takes the value zero if the respondent is female and one if the respondent is male.
Now we can rewrite the model given in Equations 1a through 1c as follows:

Yi j = β0 j + β1 j Xi j + ri j 4a.

β0 j = γ00+ u0 j 4b.

β1 j = γ10+ u1 j 4c.

ri j
i∼ N(0, σ 2);

[
u0 j

u1 j

]
i∼ N

[(
0
0

)
,

(
τ00 τ01

τ10 τ11

)]
. 4d.

Note that the level-2 model now comprises two equations, 4b and 4c, and that the
variance-covariance structure given in Equation 4d is somewhat more complicated
than before. This model implies that, within a given neighborhood, the mean BMI
for females isβ0j, and the mean BMI for males isβ0j + β1j. Thus, the mean
difference in BMI between males and females in this neighborhood isβ1j. Across
neighborhoods, the mean BMI isγ 00 for females andγ 00 + γ 10 for males, and
the mean difference is thusγ 10. The female-male difference is not constant across
neighborhoods, but varies according to a normal distribution with meanγ 10 and
varianceτ 11. Settingτ 11 = 0 simplifies the model by implying that the female-
male difference is the same in all neighborhoods. Again, substitution may be used
to combine Equations 4a, 4b, and 4c into a single combined model.

Alternatively, we might choose to add a level-2 covariate to the model given
by Equations 1a through 1c. Suppose, for instance, thatWj is an indicator variable
taking the value one if thejth neighborhood contains a fast-food restaurant, and
zero if it does not. BecauseWj characterizes neighborhoods rather than individuals,
we include it in the level-2 model

Yi j = β0 j + ri j 5a.

β0 j = γ00+ γ01Wj + u0 j 5b.

with the same variance-covariance structure given in Equation 1c. The level-1
model in Equation 5a implies that within each neighborhood BMI follows a normal
distribution with neighborhood-specific meanβ0j and varianceσ 2. The level-2
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model characterizes the distribution of these neighborhood-specific means. For
neighborhoods without a fast-food restaurant, these means vary aroundγ 00; but
for neighborhoods with a fast-food restaurant, they vary aroundγ 00 + γ 01. If
neighborhoods were randomly assigned toWj, then we would have a cluster-
randomized trial with the experimental condition being the presence of a fast-food
restaurant, andγ 01 would be interpreted as the average treatment effect.

Finally, consider a model that includes covariates at level 1 and level 2. Again,
we letXi j = 1 if the individual is male andWj = 1 if the neighborhood contains
a fast-food restaurant. Then we write the following model:

Yi j = β0 j + β1 j Xi j + ri j 6a.

β0 j = γ00+ γ01Wj + u0 j 6b.

β1 j = γ10+ γ11Wj + u1 j 6c.

with the variance-covariance structure given in Equation 4d. In this case, substi-
tution of Equations 6b and 6c into 6a gives the following combined model:

Yi j = γ00+ γ10Xi j + γ01Wj + γ11Xi j Wj + u0 j + u1 j Xi j + ri j . 7.

The combined formulation of the model given in Equation 7 highlights an im-
portant feature of this model, namely the presence of a cross-level interaction
represented by the termγ 11Xi j Wj. This interaction can be interpreted in two ways.
First, the average difference between males and females depends upon whether
or not a fast-food restaurant is present in the neighborhood (γ 10 in neighborhoods
without a fast food restaurant;γ 10 + γ 11 in those with a fast-food restaurant).
Alternatively, the difference between neighborhoods with and without fast food
restaurants depends upon the sex of the individual. For females the average differ-
ence isγ 01, whereas for males the average difference isγ 01+ γ 11. The cross-level
interaction may be omitted from this model by droppingγ 11Wj from Equation 6c.
The model may be further simplified by omittingu0j to obtain a constant intercepts
model or by omittingu1j as discussed above. Naturally, decisions to omit or in-
clude covariates, cross-level interactions, and components of variation should be
based upon theoretical and empirical considerations, as well as the purpose of the
research.

Models of the type presented in Equations 1 through 7 may be generalized in
a variety of ways. Instead of having individuals and neighborhoods respectively
as the level-1 and level-2 units, for example, we might have repeated measures
(level 1) over time on several individuals (level 2). Designs of this sort can be
used to estimate individual growth curves and can also incorporate time-varying
covariates (79, 85). Alternatively, different assumptions about the distribution of
Yi j could be incorporated into the level-1 model. IfYi j represented whether or not
a given respondent is obese, for example, then its distribution would be Bernoulli
instead of normal and a logistic link function could be used at level 1. Indeed,
multilevel models can be specified for normal, binary, categorical, ordinal, count,
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rate, and time-to-event outcome variables, incorporating appropriate distributional
assumptions and link functions. Moreover, the model can be extended to three or
more levels to account for a variety of study designs (e.g., repeated measures within
individuals within neighborhoods; individuals within classrooms within schools).
Readers interested in further details are encouraged to consult any of the books
that are now available on multilevel modeling (52, 62, 66, 78, 84, 87, 107, 118,
141).

We now have all of the notation required for our review of multilevel modeling
in public health. We shall refer to the level-1 coefficientsβ0j andβ1j as micropa-
rameters; to the level-2 coefficientsγ 00, γ 01, γ 10, andγ 11 as macroparameters;
to u0j andu1j as random effects; and to the termsσ 2, τ 00, τ 11, andτ 01 = τ 10 as
variance components (93).

QUESTIONS ABOUT THE EFFECTS OF
GROUP-LEVEL INTERVENTIONS

Perhaps the most straightforward application of multilevel models in public health
is to data arising from cluster-randomized trials. These trials are experiments in
which randomization is implemented at the group level, but outcome variables
are measured at the individual level. Numerous cluster-randomized trials have
been conducted in public health, with randomization of cities (12, 13, 45, 47, 56,
74), housing developments (139), schools (63, 89, 157), classrooms (136), and
worksites (54, 64, 69). The natural question that arises in such studies is, Did the
intervention make a difference? A simple multilevel model for addressing this
question is given in Equations 5a and 5b, and the research question involves the
value of the macroparameter,γ 01. The model can be used to obtain an estimate
of this macroparameter, to test statistical hypotheses about it, and to construct a
confidence interval for it.

Multilevel models offer several advantages over other data analytic strategies
for cluster-randomized trials. Public health investigators have realized for several
decades that individual-level analyses of data from cluster-randomized trials pro-
duce excessive Type I errors. Such analyses ignore the dependence of individuals
in the same cluster, causing the precision of the estimate ofγ 01 to be overstated. In-
deed, in 1978, Cornfield described the practice of applying individual-level analytic
techniques to data from cluster-randomized trials as “an exercise in self-deception”
(14, p. 102). The primary advantage of multilevel models in this setting, therefore,
is that they provide an accurate representation of the sources of variability in the
data, and thus lead to more honest test statistics,p-values, and confidence intervals.

An alternative data analytic strategy for cluster-randomized trials is to conduct
a single-level analysis at the level of the group. The investigator first computes
a collection of cluster-specific means, then treats these means as the dependent
variable in a single-level model. Individual-level covariate adjustment can be in-
corporated in the first stage by applying some specified covariate distribution to
each cluster, and then treating the adjusted means as outcomes. Multilevel models,
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in contrast, implement both stages simultaneously, allowing for direct adjustment
for individual-level covariates through their inclusion in the level-1 model, as in
Equations 6a through 6c. They also allow the investigator to test hypotheses about
the variability of treatment effects across subgroups defined by individual-level
covariates, through the inclusion of cross-level interaction terms. Thus, compared
with the single-level analysis of (adjusted) cluster-specific means, multilevel mod-
els offer advantages of convenience and flexibility. In most cases they also provide
greater statistical power.

In addition to these advantages, insights from multilevel modeling have been
used to aid in the design of cluster-randomized trials. Recognizing that statistical
power in such studies depends upon the number of clusters in each treatment
condition, the number of individuals measured in each cluster, and the intracluster
correlation coefficient, several authors (e.g., 27, 77, 116) have developed methods
for determining the sample size requirements for these trials. It should be noted that
the extreme case of only one cluster per treatment condition (e.g., 9, 96) provides
no basis at all for statistical inference. Other investigators (e.g., 60, 109, 110, 138)
have provided estimates of intracluster correlation coefficients to help facilitate
sample size calculations.

Because including additional clusters in such trials is typically quite expensive,
adjustment for preintervention measures of outcome variables is often used as a
cost-effective way of increasing power. This can be done through either of two
designs: (a) the longitudinal cohort design, in which measurements are taken on
the same individuals before and after the intervention, and (b) the repeated cross-
sections design, in which samples are drawn independently before and after the
intervention. Diehr and colleagues (19) have considered the relative merits of
these strategies. Multilevel models can be adapted easily to either of these design
options. Several references are available concerning the design and analysis of
cluster-randomized trials (28, 29, 76, 106, 107, 140, 142).

Several limitations should be noted in the interpretation of estimated treatment
effects. The first stems from the possibility that, in theory, the effect of any treatment
could vary across clusters. Although a given intervention may decrease smoking
rates in one worksite, for example, it may have no effect on smoking rates in another.
The study designs discussed above provide estimates of the average treatment
effect, but provide no information about the magnitude of the treatment effect
within a specific cluster, nor the degree of variability of the treatment effect between
clusters. Thus, although cluster randomized trials can help answer the question, Did
this cluster-level intervention make a difference on average?, they cannot answer
the question, Did the intervention make a difference in this specific cluster? Testing
interaction terms between cluster-level treatment indicators and other cluster- or
individual-level variables can, however, provide some insight into the possible
systematic variation in the effect of the treatment.

The second limitation concerns the generalizability of the average treatment
effect. Typically, the clusters in cluster-randomized trials are selected on the basis of
convenience and do not contain a random sample from any well-defined population.
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Any inference that the estimated treatment effect will apply to other clusters,
therefore, cannot be made on the basis of probability theory but must rely instead
upon careful judgments about the similarity of possible future intervention sites to
those that were studied in the trial. In the absence of random selection of clusters,
therefore, cluster-randomized trials cannot answer the question, What would be
the effect of implementing this intervention in other clusters?

We wish to emphasize the importance of randomization to the interpretation of
the treatment effect as a causal quantity. On many occasions, major group-level
intervention studies have allocated clusters to treatment conditions on the basis
of convenience or the preferences of local policymakers or administrators (9, 36,
41–44, 46, 88, 90, 96, 108, 112). Nonrandom assignment threatens the validity
of the causal interpretation of the treatment effect because treatment and control
clusters may then differ systematically in terms of (a) the preintervention levels of
dependent variables, (b) the distribution of level-1 covariates that interact with the
treatment, or (c) the potential effect of the treatment. This third factor is especially
worrisome because clusters may self-select into treatment conditions based on the
magnitude of their expected benefit. School administrators, for instance, might be
more likely to opt for an intervention condition, given the choice, if they believe
(possibly for good reason) that their students will benefit from that program. More-
over, this type of self-selection process may not be related to observable covariates,
and thus may not be amenable to statistical adjustment to reduce the resulting bias.

Finally, for a variety of reasons, statistical inference in cluster-randomized trials
depends strongly upon the number of clusters in each treatment condition. As
discussed above, the number of clusters per condition is an important determinant
of statistical power (27, 116). Furthermore, when the number of clusters in each
condition is greater than one but still relatively small, key results from asymptotic
theory may not apply. In particular, most hypothesis testing and confidence interval
construction for cluster-randomized trials rely on the assumption that estimates
of the treatment effect are distributed normally around their true value. When the
number of clusters is large, the central limit theorem guarantees that this assumption
will be approximately true. When the number of clusters in each condition is
small, however, the distribution of treatment effect estimates may be dramatically
nonnormal. Moreover, the normality assumption is especially difficult to test in
these circumstances because there are too few residuals for assessing the shape of
their distribution. Relatedly, when the number of clusters is relatively small and
the within-cluster sample sizes vary widely, the standard error of the treatment
effect will generally be too small. Although a Bayesian analysis can mitigate this
problem to some degree [see (118), pp. 410–12], we recommend striving for equal
within-cluster sample sizes in cluster-randomized trials with a small number of
clusters in each experimental condition.

Virtually all of the limitations discussed above concern the design of cluster-
randomized trials. Studies with too few clusters provide little or no basis for sta-
tistical inference; those that fail to randomize clusters to treatment conditions
undermine the basis for causal inference; and even well-designed and well-executed
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cluster-randomized trials provide limited information about the variability and
generalizability of treatment effects. These limitations are inherent in the data. No
statistical model, multilevel or otherwise, can substitute for careful study design.

QUESTIONS ABOUT MULTILEVEL ETIOLOGY

Although the analysis of cluster-randomized trials may represent the most straight-
forward application of multilevel models in public health, the most widespread
use of such models to date may be found in observational studies of multilevel
health etiology. Researchers working in this area pose the general question, Do
neighborhoods matter for health? Social epidemiologists have reported stark dif-
ferences between neighborhoods in age-adjusted mortality rates, with the residents
of impoverished areas being much more likely to die young (51, 59, 98). Several
ecological studies likewise revealed higher mortality rates and worse health in
geographic aggregates characterized by widespread deprivation or concentrated
disadvantage (37, 97, 101, 105, 115, 122). These findings raise the possibility
that characteristics of shared physical or social environments may make important
contributions to individual health. Yet the difficulties in interpreting ecological
associations are well known to epidemiologists (58, 113, 144, 146), and the need
for multilevel data, and multilevel models, is therefore clear.

Initial Partitioning of Variance

A preliminary question that arises in investigations of the multilevel etiology of
health and disease is, How much do neighborhoods (or other geographical ag-
gregates) vary on key health measures? This question concerns the magnitude of
the variance component,τ 00, in Equation 1. Fitting this simple model provides an
estimate ofτ 00, as well as a test of the null hypothesis thatτ 00 = 0 (i.e., that there
is no variation between neighborhoods). Moreover, if the variable in question is
continuous and an identity link function is chosen, this model also provides an
estimate ofσ 2, which can then be used along with the estimate ofτ 00 to compute
the intracluster correlation coefficient,ρ, using Equation 3. Several investigations
of the multilevel etiology of disease begin with precisely this approach (7, 30, 31,
32, 48, 55, 61).

Although the resulting statistics provide an interesting descriptive summary of
the data, they should not be overinterpreted. Three points should be borne in mind.
First, the statistical test of the null hypothesisτ 00 = 0 may be relatively weak,
leading to potential type II errors. Therefore, failure to reject this null hypothe-
sis does not necessarily imply that there is no variation between neighborhoods.
Second, when the outcome variable is not continuous and a link function other
than identity (e.g., log or logit) is used at level 1, the level-1 variation cannot be
easily summarized by a single term likeσ 2, and thereforeρ cannot be computed.
A variety of approaches have been proposed for dealing with this problem (e.g.,
118, p. 298; 141, p. 224), but none is wholly satisfactory.
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Third, and most important, there is no direct correspondence between the
amount of variation falling at a given level and the extent to which explana-
tory variables may be found at that level. Indeed, a relatively small value ofρ

may correspond to relatively large standardized mean differences (35). It is well
known and often noted that variation between neighborhoods may be due to the
individual-level characteristics of residents. Conversely, neighborhood-level co-
variates may play an important etiological role even when there is virtually no
between-neighborhood variation. This somewhat counterintuitive point reflects
the complex ways in which etiologically important covariates at multiple levels
can interact to produce different patterns of variation in an outcome measure. In-
vestigators should not be discouraged from exploring the possible contributions
of neighborhood-level covariates, even whenτ 00 is small.

Context and Composition

As a natural follow-up to the unconditional partitioning of variation described
above, investigators often pose the question, To what extent are observed vari-
ations between neighborhoods due to characteristics of the individuals residing
in them? This question is typically framed using the language of “context versus
composition” (20, 33). For example, divergent mortality rates in different neigh-
borhoods could be explained by the concentration of retirement communities and
nursing homes in some areas, and of young families in others. In such a situa-
tion, one might observe considerable between-neighborhood variation in mortal-
ity rates, but this variation could be wholly explained by the ages of individual
residents.

To address this problem, investigators (7, 30, 31, 32, 48, 55, 61) often introduce
several individual-level covariates,X1i j , . . . ,Xki j , to the model at level 1, as in Equa-
tion 4, usually holding their coefficients fixed (i.e.,β1 j = γ 10, . . . , βk j = γ k0; or
equivalently,τ 11 = . . . = τ kk= 0). This yields a new estimate of the level-2 vari-
ance component,τ ∗00, with variation due to the individual-level covariates removed.
The investigator may again conduct a statistical test of the null hypothesis thatτ ∗00
= 0 and may compare this new estimate directly with the estimate ofτ 00 from the
unconditional model. Ifτ ∗00 remains nonzero, the investigator may conclude that
some proportion of the between-neighborhood variation is due to characteristics
of the neighborhoods rather than to their composition. Indeed, the ratio ofτ ∗00 to
τ 00 is sometimes interpreted as the proportion of between-neighborhood variation
that is caused by neighborhood-level factors.

Although this data analytic strategy has intuitive appeal, the inferential problems
involved are actually rather thorny. One problem is that etiologically important
individual-level covariates may be omitted from the level-1 model, and those that
are included may be measured with error. As a result, the model may be vulnerable
to criticism that compositional variation has not been completely removed, in
which caseτ ∗00 might still be considered an overestimate of variation between
neighborhoods that is not accounted for by the characteristics of residents. A
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second problem is that the omission of level-2 covariates from this model may
cause the contribution of level-1 covariates to be overstated. This will be the case
whenever there exists some neighborhood-level covariate,Wj, that is (a) omitted
from the model, (b) correlated with the dependent variable, and (c) correlated with
one or more of the individual-level compositional variables in the level-1 model.
In this situation,τ ∗00 underestimates the variation between neighborhoods because
some of the variance related toWj has been inadvertently removed.

Thus, investigators wishing to separate context from composition using this
approach are faced with a vexing specification problem. On the one hand, omit-
ting important individual-level covariates can causeτ ∗00 to be overestimated; on
the other hand, including individual-level covariates that correlate with etiologi-
cally significant neighborhood-level covariates can causeτ ∗00 to be underestimated.
Moreover, in most applications it is likely that both of these problems will apply,
makingτ ∗00 virtually uninterpretable within the context versus composition frame-
work. The problem, in substantive terms, is that context and composition are
deeply confounded. Selection processes operate to place individuals with certain
characteristics into certain types of neighborhoods. Within neighborhoods, these
and other individual characteristics combine interactively to shape individual and
collective outcomes. Meanwhile, the characteristics of neighborhoods may affect
health outcomes in part by modifying individual-level covariates. The complexity
of these multilevel selection, interaction, and mediation processes makes it difficult
to separate context from composition using observational data.

One strategy that provides a partial remedy to these difficulties is a two-stage
analysis (120). In the first stage, one fits a model similar to that given in Equations
4a through 4c, but holding the slopes fixed (i.e.,u1j = 0) and group-mean centering
the individual-level covariates:

Yi j = β0 j + β1 j (Xi j − X̄. j )+ ri j 8a.

β0 j = γ00+ u0 j 8b.

βi j = γ10 8c.

with the same variance-covariance structure given in Equation 1c. HereX̄. j is the
neighborhood-specific mean of the covariateXi j . The group-mean centered covari-
ate has the useful property of being independent of all neighborhood-level covari-
ates,Wj, and the estimate ˆγ10 therefore represents the average within-neighborhood
effect ofXi j . The next stage is to generate an adjusted dependent variable,Y∗i j =
Yi j − γ̂00− γ̂10Xi j . Finally, one estimates the model given in Equations 1a through
1c, withY∗i j as the dependent variable. This model produces a newτ ∗00 that is ad-
justed for all of the individual-level covariates included in the first stage, but still
contains all of the variation attributable to neighborhood-level covariates. Because
some importantXi j may still be omitted, and those that are included may be mea-
sured with error, this newτ ∗00 should be considered an upper bound on the true
variability between neighborhoods that cannot be attributed to composition.
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Effects of Cluster-Level Variables

An alternative approach for studying the multilevel etiology of health focuses
on the effects of specific cluster-level covariates. This research strategy seeks
to answer questions of the type, Does this cluster-level variable affect people’s
health? Investigators using this approach generally fit models of the form given
in Equations 6a through 6c to cross-sectional data; their primary interest is in the
value of the macroparameter,γ 01, associated with the cluster-level covariate,Wj

(10, 23–25, 34, 38, 40, 49, 67, 70, 71, 75, 95, 102, 103, 121, 125, 131, 132, 137, 143,
156). The use of multilevel models in this context produces efficient estimates and
realistic standard errors for these parameters, and thereby provides a sound basis for
hypothesis testing and confidence interval construction. Yet several uncertainties
arise regarding the proper specification of the model, and these uncertainties may
undermine the interpretability ofγ 01 as a scientifically meaningful quantity.

One problem involves the treatment of individual-level covariates in the level-1
model. In studies of the relationship between area socioeconomic characteristics
and individual health, for instance, some investigators include an extensive list of
individual-level variables in their models (e.g., 10, 23, 49, 67, 70, 71, 95, 121, 125,
131, 132, 156). Others, in contrast, include only a small number of individual-level
demographic covariates such as age, sex, and a crude measure of socioeconomic
position (e.g., 24, 25, 75, 103, 143). Whether their approach to level-1 covariates
is inclusive, restrictive, or somewhere in between these two extremes, investiga-
tors seldom provide an explicit justification for their overall model specification
approach or for their decisions regarding the inclusion or omission of specific
individual-level covariates.

The striking absence of critical discussions of level-1 model specification in this
area of research may reflect investigators’ reluctance to confront the nettlesome
substantive issues that are involved. The two major considerations are mediation
and confounding. In this context, an individual-level variable may be regarded
as a potential confounder if it contributes to the processes that sort individuals
into neighborhoods and affects the local health outcome independently of neigh-
borhood characteristics. For example, individual poverty could limit one’s access
to quality medical care and also limit one’s residential options to neighborhoods
characterized by concentrated poverty; it might therefore create a spurious associa-
tion between neighborhood poverty and individual health. Investigators concerned
about confounding typically include potential confounders in the level-1 model in
order to reduce their biasing impact on the estimate ofγ 01, leading to an inclusive
approach to level-1 model specification.

Alternatively, individual-level covariates could act as mediators, accounting
mechanistically for the association between a neighborhood-level variable and an
individual-level health outcome. For example, living in a neighborhood with a high
concentration of bars and liquor stores could lead to high levels of individual alco-
hol consumption, with the resulting impacts on cardiovascular and liver function.
Including an individual-level measure of alcohol consumption as a covariate in a
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model linking neighborhood-level liquor store concentration to individual health
yields an interpretation ofγ 01 as the direct (i.e., unmediated) effect of liquor store
concentration (4). Yet the investigator may desire an estimate of the total, not just
the direct, effect. In such cases, inclusion of the potential mediator in the level-1
model could be characterized as overadjustment. This line of reasoning leads to
the adoption of a restrictive approach to level-1 model specification.

The appropriate specification of the level-1 model becomes problematic in the
absence of a strong basis for classifying individual-level covariates as either con-
founders or mediators. For many individual-level covariates, existing theoretical
and empirical considerations simply do not permit an unambiguous classification,
especially when the available data are cross-sectional, as is common in studies of
this type. Epidemiologists may therefore disagree on whether or not an individual-
level covariate should be included in the level-1 model. Investigators may then
consider specifying two versions of the model, one including and the other omit-
ting the questionable covariate. Convergent results would reduce uncertainty, while
divergent results would increase it.

In many cases, however, a single individual-level variable may play both roles,
confounder and mediator, simultaneously. The possible confounding role of in-
dividual poverty was considered above, but poverty may also mediate the asso-
ciation between socioeconomic characteristics of neighborhoods and individual
health. For instance, residing in a neighborhood with high levels of unemploy-
ment may deprive one of contact with social networks through which access to
employment opportunities may be obtained; this could lead to ongoing individual
poverty, which in turn could have consequences for health. In situations where a
single individual-level covariate plays both confounding and mediating roles, nei-
ther level-1 model specification (including or omitting the covariate in question)
is entirely satisfactory. Including the covariate leads to an overadjusted estimate
of γ 01, whereas omitting the covariate leads to an estimate that is biased by con-
founding. In such cases, there may be no level-1 model specification that yields a
scientifically interpretable estimate ofγ 01.

Another source of uncertainty in the interpretation ofγ 01 involves the selection
of neighborhood-level variables for inclusion in the model. Some investigators
(e.g., 24, 25, 121, 125) include a single neighborhood-level variable in their mod-
els, usually derived from census data aggregated to the tract or zip code level.
Examples include median income, median house value, percent living below the
poverty line, and proportion of female-headed households. Aggregated census
variables such as these, however, tend to be highly correlated with one another,
making their unique effects on health outcomes difficult to distinguish (50). For
example, ifYi j is a measure of respiratory function andWj is the proportion of
neighborhood residents living in overcrowded housing, thenγ 01 might be inter-
preted as the effect of widespread overcrowding in a neighborhood on respiratory
health. But because neighborhoods characterized by overcrowding may also have
lower median incomes, higher unemployment rates, and higher proportions of peo-
ple working in manual labor, any effects that these variables have on respiratory
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health could makeγ 01a biased measure of the effect of overcrowding. On the other
hand, including these potential confounders in the model could greatly increase
the variance of the estimate ofγ 01, making even strong effects difficult to detect.

For this reason many investigators have turned to combining aggregate census
variables into indices. Such indices are derived by standardizing and summing
these census variables, or by means of principle components or factor analysis,
and are often given names like deprivation (34, 38, 70, 71, 75, 143), social envi-
ronment (23, 156), or concentrated disadvantage (8, 132). This approach has the
advantage of avoiding, to some degree, the erroneous ascription to one variable
(e.g., overcrowding) of effects that are actually attributable to other variables (e.g.,
neighborhood poverty and unemployment). The downside of this solution is the
vague meaning ofγ 01. If Wj were median income, then we could interpretγ 01 as
the expected change inYi j that would result if we raised the median income in
a neighborhood by one unit. WhenWj is a summary index comprised of many
census variables, however, the practical interpretation ofγ 01 is no longer obvious.
The alternatives, then, could be characterized as dishonest specificity and honest
ambiguity. Investigators must rely upon their judgment to determine which, in a
particular research setting, is the lesser evil.

Not all research on the multilevel etiology of health relies exclusively on census
data for the characterization of neighborhoods. Several investigators, instead, have
undertaken the direct quantification of the features of neighborhood physical and
social environments that are thought to play important etiological roles in health.
Examples of such measures include the presence or absence of supermarkets, fast-
food restaurants, and other commercial food establishments in a neighborhood
(103), neighborhood social support (8), collective efficacy (135), and physical
and social disorder (119). To the extent that census variables are used as proxies
for these environmental variables, direct measurement is clearly to be preferred.
Direct measures can be costly and time-consuming to obtain, however, and share
with census variables the problem of possible confounding by other measured and
unmeasured individual- and neighborhood-level covariates.

Effects of Individual-Level Variables in a Multilevel Setting

Although seldom employed in public health [but see (8)], a third approach to
studying the multilevel etiology of health is to place well-established group dif-
ferences into a multilevel context. Consider, for example, the average difference
between African American and White adults in systolic blood pressure (151). One
potential explanation for this difference is that, in the context of striking residential
segregation (94), African American and White neighborhoods may differ system-
atically in terms of factors that influence blood pressure. An obvious strategy
for handling this possibility would be to compare the blood pressures of African
Americans and Whites who reside in the same neighborhood. This is precisely
what economists attempt to do by adding a fixed effect (an indicator variable) for
every neighborhood studied. These fixed effects should capture all of the effects
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on blood pressure of heterogeneity between neighborhoods. Any remaining dif-
ference between African Americans and Whites cannot, therefore, be explained
by their residential environments. An analogous but more parsimonious approach
is possible within a multilevel modeling framework. The model to be specified
is identical to that given in Equations 8a through 8c, withXi j being an indicator
variable for race/ethnicity and̄X. j being its mean value within thejth neighbor-
hood. Following this approach, the macroparameterγ 10 is interpreted as average
within-neighborhood difference in blood pressure between African Americans and
Whites. It may be substantially different from the overall race/ethnic disparity in
blood pressure.

Several extensions of the group-mean centered model are possible. The first
is to include a random effect,u1j, in Equation 8c. A nonzero variance,τ 11, of
this random effect would imply that the disparity in blood pressure varies across
neighborhoods. One might then attempt to model variations in the disparity by
introducing measured neighborhood-level variables (Wjs) into Equation 8c.

An important point about this approach is that the estimated effects of spe-
cific neighborhood-level covariates on health are not the focus. In the fixed effects
approach discussed previously, the research questions involved the value of the
macroparameterγ 01 associated with the cluster-level covariateWj, and the inter-
pretation of this parameter was problematized by uncertainty about the appropriate
specification of the level-1 and level-2 models. The group-mean centering approach
described in this section is free of such problems. Because no cluster-level vari-
ables are included in the model, we need not worry that the estimate of their effects
could be biased owing to confounding or overadjustment. Instead, by situating a
well-known individual-level disparity within a multilevel framework, we remove
the entire contribution of this disparity to cluster-level heterogeneity. The group-
mean centering approach is not appropriate, however, for studying the effects of
neighborhood-level covariates when adjustment for individual-level covariates is
desired. In this context, grand-mean centering of the individual-level covariates
leads to a more meaningful interpretation ofγ 01 [see (118), p. 142].

QUESTIONS ABOUT THE VALUES OF MICROPARAMETERS

Our discussion thus far has focused on applications of multilevel modeling in
which the parameters of interest are either the variance components (σ 2, τ 00,
τ 11, andτ 01= τ 10) or the macroparameters (γ 00, γ 01, γ 10, andγ 11). Sometimes,
however, investigators are most interested in the values of the microparameters
(β0j andβ1j) for each of thej clusters studied. In these applications, the theory of
empirical Bayes estimation comes into play. Consider the multilevel model given
in Equations 1a through 1c. For thejth cluster, we have two possible estimates of
β0j: the cluster-specific sample mean,Ȳ. j , and the grand-mean, ˆγ00. It turns out
that an optimal estimator is actually a weighted average of these two:

β∗0 j = λ j Ȳ. j + (1− λ j )γ̂00, 9.
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whereλj is called the reliability and represents the ratio of true score to total
score variance in the cluster-specific sample mean. The larger the size of the
cluster-specific sample is, the more reliable this mean will be and the more heavily
weightedβ∗0 j will be towardȲ. j . When the cluster-specific sample size is small,
however,β∗0 j “borrows” information for the other clusters in order to compensate
for the statistical fluctuations associated with small samples. Becauseλj must be
estimated from the data,β∗0 j is called an empirical Bayes estimator.

Empirical Bayes estimators have diverse applications in public health. Perhaps
the most common use has been the estimation of rates of unusual health outcomes in
small populations. In this setting, the observed rate,Ȳ. j , may not be a good indicator
of the true underlying rate, but applying the population average rate to all clusters
may obscure important clues to disease etiology. Empirical Bayes estimators, or
adaptations thereof, have been used to characterize toxoplasmosis rates in cities in
El Salvador (39, 104); to obtain age- and sex-specific stomach, bladder, and lung
cancer rates in Missouri counties (147, 148); to derive age-standardized lip cancer
rates for areas in Scotland (11); to map county-level, sex-specific, age-standardized
cancer and fire- and burn-related mortality rates for the United States (17, 18, 91);
and to map breast cancer and Hodgkin’s lymphoma rates in health districts in
Sardinia (3). Unfortunately, virtually all of these applications have appeared in the
statistical and biostatistical literature, and the use of empirical Bayes methods for
estimating rates of health outcomes has not been widespread among other public
health investigations. Further applications of empirical Bayes methods, such as the
simultaneous estimation of effects of multiple exposures on health (57, 154) and
modeling the progression of HIV infection (16, 80), have likewise been confined
to the statistical literature.

One area in which the use of empirical Bayes methods has moved beyond the
technical literature is the relative performance of different health care providers.
The publication in England, Scotland, and the United States of such performance
indicators as physician- or hospital-level mortality rates for a given surgical pro-
cedure has generated intense debate about the meaningfulness and utility of such
indicators (68, 99, 100). Two issues often arise in this debate, both of which have
relevance for the use of empirical Bayes methods: reliability and risk adjustment.
The issue of reliability is founded on the idea that the observed average level of
some outcome for a given health care provider reflects both systematic and chance
components. The systematic components are the desired basis for comparison, but
the chance components may be so large that little can be inferred from observed
data about the systematic components. Investigations have shown, for example,
that the physician-specific average level of glycemic control in diabetics is not
stable enough to support meaningful comparisons of physician performance (65).

The second problem, risk adjustment, relates to the possibility that health care
providers may have very different patient mixes. Whereas one surgeon handles
routine procedures that involve little risk of complication, another may consis-
tently be sought out by patients for the most complicated procedures. In such a
case, the latter physician may do better work yet the former may achieve a lower
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postoperative mortality rate. The need for some kind of risk adjustment in compar-
ing providers’ performance is therefore widely recognized, and the methods for
accomplishing this adjustment have received considerable attention (5, 6, 134).

Empirical Bayes procedures may be useful for addressing both of these prob-
lems. As discussed above, empirical Bayes estimators have often been used to
achieve greater stability in situations in which standard estimators may be unre-
liable. Moreover, some degree of risk adjustment may be obtained by including
patient-level measures of risk or severity in a multilevel model. Several investi-
gators, therefore, have used multilevel models of the type given in Equations 4a
through 4c, with patients at level 1 and providers at level 2, to obtain stabilized,
risk-adjusted indices of provider performance (15, 72, 81–83). In these applica-
tions,Xi j represents some measure of risk for theith patient being treated by the
jth health care provider. The effects of these measures of risk are usually treated
as fixed (i.e.,τ 11 = . . . = τ kk = 0) andβ∗0 j is interpreted as the risk-adjusted
performance indicator for thejth provider. The desirability of including variables
measuring provider characterstics in the level-2 model have been discussed in the
literature on evaluation of educational institutions (120) and may be applicable to
health care evaluation.

Three important difficulties characterize this approach. The first concerns the
specification of the level-1 model. The goal should be to include a set of measures of
patient variables that will completely remove differences in risk that are beyond the
control of the provider, without removing differences that may be attributable to the
quality of the care received from that provider. This ideal may be difficult to achieve.
Indeed, much of the literature on risk adjustment in performance evaluation focuses
on the proper specification of the risk-adjustment model (e.g., 6, 99, 100). A second
difficulty is that, even with the increased reliability of empirical Bayes estimators,
the resulting indicators of provider performance may still be too unstable to permit
a useful comparison of individual providers (53, 65, 145).

A third difficulty that arises in using empirical Bayes estimators as performance
indicators relates to bias. In most settings, statistical theory guarantees thatȲ. j is
an unbiased estimator of the mean in thejth cluster. Yetβ∗0 j is pulled away from
this unbiased estimator by the term (1− λj)γ̂00 in Equation 8. This bias can be
very small whenλj is large (in fact, it approaches zero as the sample size within
the jth cluster increases to infinity), but it may be substantial in practical settings.
Moreover, the degree of bias inβ∗0 j will vary across clusters when the cluster-
specific sample sizes differ. In the context of health care provider ratings, if all
providers had an identical number of patients whose outcomes could be observed,
the bias affecting the empirical Bayes estimator would be inconsequential. It would
shift all provider-specific outcome estimates toward a common mean, ˆγ00, but
would not alter the rank order of providers. With unequal sample sizes, however,
the degree of bias could vary substantially, leading to a reordering of ranks as small,
high-performing providers are unfairly “punished” and small, poor-performing
providers are inordinately “rewarded.” In any possible application of empirical
Bayes estimators, in fact, the investigator must consider carefully the implied
trade-off between reliability and bias.
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CONCLUSION

Public health investigators have found a variety of uses for multilevel statistical
models. The diversity of the applications discussed above is a testimony to the
flexibility of these models for answering a wide range of seemingly disparate
research questions. Nevertheless, the full potential of multilevel models has yet to
be realized in public health. The inferences that public health investigators wish to
make, in fact, could be strengthened by more carefully framing research questions,
and by more fully exploiting the capacity of multilevel models.

A major difficulty in public health, as in many other fields, is the threat to the
internal validity of inferences posed by confounding in observational studies (73).
These difficulties do not characterize experiments, since the randomization of units
to treatments guarantees that, on average, there will be no confounding. Yet in many
instances, ethical or logistical considerations render experimental randomization
impossible. Statistical thinking about these inferential problems draws upon a
counterfactual framework sometimes known as the Rubin causal model (86, 129,
133). From this framework, several methods for obtaining measures of treatment
effects from observational data have been developed, including propensity score
matching, the use of instrumental variables, and selection modeling (2, 130, 152,
153).

Public health applications of multilevel models, particularly those using non-
experimental data, could be substantially improved by integrating counterfactual
thinking into the framing of research questions. This can often be accomplished
by considering what randomized experiment a given nonexperimental design is in-
tended to approximate. In multilevel studies of the etiology of disease, for example,
it is usually unclear which of at least two possible experiments the research aims to
emulate. The first experiment is one in which neighborhoods or other clusters are
assigned at random to two or more treatments, such as median income or levels of
some socioeconomic index. This is precisely analogous to a cluster-randomized
trial. If it could be done, this type of experiment would be useful for answering
questions about what would happen to the residents of a given neighborhood if the
characteristics of that neighborhood could be changed. Yet because experiments
in which the socioeconomic characteristics of entire neighborhoods are system-
atically altered (without altering the socioeconomic characteristics of individual
residents) may never be technically feasible, the question becomes, How can the
standard observational study of this type be made to resemble as closely as possible
a cluster randomized trial?

A second possible experiment involves the random assignment of individuals
or families to different neighborhoods. Such a design was employed in the Mov-
ing to Opportunity study, in which families living in publicly assisted housing
in high-poverty neighborhoods were assigned to one of three experimental con-
ditions: (a) housing assistance and mobility counseling, with a requirement to
move to a low-poverty neighborhood, (b) Section 8 housing vouchers, with the
ability to move anywhere, and (c) no housing assistance. Preliminary results of
this study (128) suggest that families in the first condition experienced significant



13 Feb 2004 14:26 AR AR209-PU25-03.tex AR209-PU25-03.sgm LaTeX2e(2002/01/18)P1: IBD

70 BINGENHEIMER ¥ RAUDENBUSH

improvement, relative to the other two groups, in a variety of variables related to
well-being. Clearly this experiment would answer quite different questions from
those addressed by the hypothetical cluster-randomized trial described above. Yet
questions about the effects of moving to particular types of neighborhoods may
have great relevance to public health policy. How can observational studies be
conducted to resemble as closely as possible the experimental design exemplified
by the Moving to Opportunity study?

It seems clear that if the usefulness of observational data is to be maximized,
those data will often need to be longitudinal. Fortunately, multilevel models are
very well suited to longitudinal data. Indeed, some of the earliest proposed multi-
level models (150, 155) were intended for fitting a set of individual linear growth
curves to longitudinal blood pressure data. Since then, growth curves estimated via
multilevel models have only rarely appeared in the public health literature but have
been common in educational and psychological research (117, 127). Multilevel
modeling approaches to the study of individual change have many advantages,
including (a) individuals need not be observed at the same times or on the same
number of occasions, (b) time-varying covariates can be incorporated into the
model, and (c) individual change parameters can be situated in larger contexts
such as neighborhoods and workplaces. Growth curve models represent the most
underexploited use of multilevel models in public health. Combining these models
with longitudinal data and a careful posing of research questions within the coun-
terfactual framework may go a long way toward advancing scientific knowledge
about the public’s health and how best to improve it.
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