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Statistical Methods for Profiling Providers of Medical
Care: Issues and Applications

Sharon-Lise T. NORMAND, Mark E. GLICKMAN, and Constantine A. GATSONIS

Recent public debate on costs and effectiveness of health care in the United States has generated a growing emphasis on “profiling”
of medical care providers. The process of profiling involves comparing resource use and quality of care among medical providers
to a community or a normative standard. This is valuable for targeting quality improvement strategies. For example, hospital
profiles may be used to determine whether institutions deviate in important ways in the process of care they deliver. In this article
we propose a class of performance indices to profile providers. These indices are based on posterior tail probabilities of relevant
model parameters that indicate the degree of poor performance by a provider. We apply our performance indices to profile hospitals
on the basis of 30-day mortality rates for a cohort of elderly heart attack patients. The analysis used data from 96 acute care
hospitals located in one state and accounted for patient and hospital characteristics using a hierarchical logistic regression model.
We used Markov chain Monte Carlo methods to fit the model and to obtain performance indices of interest. In particular, we
estimated the posterior probability that mortality at the ith hospital is l-% times the median mortality rate over all the hospitals
in the state. We also calculated the posterior probability that the deviation in average risk-adjusted and “standardized” mortality
at the ith hospital is “large.”” We compare the results of evaluating hospitals based on our performance indices to those obtained
using conventional measures. With 30-day risk-adjusted mortality rates ranging from 12% to 14%, one-quarter of the hospitals
had posterior probabilities that hospital-specific mortality was l-% times the median mortality rate greater than 15%. The posterior
probability of a large difference between risk-adjusted and standardized mortality rates was less than 6% for three-quarters of the
hospitals we examined. Although there were differences in the evaluation of each hospital by the various criteria, one hospital
consistently emerged as having the worst performance by all criteria.

KEY WORDS: Acute myocardial infarction; Excess mortality; Gibbs sampler; Hierarchical regression model; Posterior inference;

Quality of care.

1. INTRODUCTION

Profiling medical care providers on the basis of qual-
ity of care and utilization of resources is rapidly becom-
ing a widely used analysis in health care policy and re-
search (Epstein 1995; Green and Wintfeld 1995; Hannan et
al. 1994; Kassirer 1994; Landon et al. 1996; McNeil, Ped-
ersen, and Gatsonis 1992; Salem-Schatz, 1994). Although
comparative performance measures of health care were pro-
posed as early as 1916 (Codman 1916), their use became
widespread only recently. The results of profiling analy-
ses often have far-reaching implications. They are used to
generate feedback for health care providers, to design ed-
ucational and regulatory interventions by institutions and
government agencies, to design marketing campaigns by
hospitals and managed care organizations, and, ultimately,
to select health care providers by individuals and man-
aged care groups. The recent trend of compiling and mak-
ing available “report cards” for hospitals and individual
health care practitioners has brought unprecedented pub-
lic scrutiny to the practice of medicine. The effects of
such scrutiny are undoubtedly complex and will unfold over
time. However, the methodology for generating the reports
needs more immediate attention (Epstein 1995; Localio et
al. 1995).
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Profiling is the process of comparing quality of care, use
of services, and cost with normative or community stan-
dards. For example, hospital readmission rates within 2
weeks of discharge may be compared to a norm based on
national rates. The profiling process normally includes a
risk-adjustment step intended to account for possible dif-
ferences in patient case mix (Iezzoni 1994; Landon et al.
1996; Salem-Schatz et al. 1994). In addition to a large body
of work in medical research, the methodologic aspects of
risk-adjustment have been extensively discussed in the lit-
erature on observational studies (see Rosenbaum 1995 and
references therein). But the essence of profiling analysis
lies in developing and implementing performance indices
to evaluate medical care providers, such as physicians, hos-
pitals, and care-providing networks. In this article we pro-
pose a class of measures for provider performance based on
the posterior probability that a provider’s patients have an
unusually high frequency of adverse events. Our measures
are derived from the fit of hierarchical regression models.

A major initiative to evaluate hospital performance in
the United States was launched by the Health Care Financ-
ing Administration (HCFA) in 1987 with the annual release
of hospital-specific data comprising observed and expected
mortality rates for Medicare patients. Hospitals observed to
have higher-than-expected mortality rates were flagged as
institutions with potential quality problems. HCFA derived
mortality rates by estimating a patient-level model of mor-
tality for disease-based cohorts using administrative data.
The expected hospital-specific mortality rates were calcu-
lated by averaging the model-based estimated probabilities
of mortality within each hospital over the hospital’s patient
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population. HCFA’s approach is typical of many published
profiling analyses, and it is mainly for this reason that we
discuss it in some detail in this article.

The public release of hospital-specific performance data
was suspended in 1994, primarily as a result of the inad-
equacy of HCFA’s administrative databases to provide the
necessary detail for case mix adjustment and also the lack
of information on patient compliance (Berwick 1990; Kas-
sirer 1994). To remedy the problem, HCFA began a new
initiative to carry out streamlined, in-depth data collection
on several disease-specific patient cohorts. A subset of this
newly collected information forms the dataset analyzed in
this article. But our approach is designed to address sev-
eral methodological concerns about HCFA’s approach to
profiling beyond the inadequacy of case mix adjustment.
First, because of differences in hospital sample size, the pre-
cision of the hospital-specific estimates may vary greatly.
Large differences between observed and expected mortality
rates at hospitals with small sample sizes may be due pri-
marily to sampling variability. Second, hospital practices
may induce a strong association among patient outcomes
within hospitals even after accounting for patient character-
istics. Consequently, the errors associated with the effects
of patient covariates on mortality may be underestimated.
Third, the HCFA regression model makes no attempt to sep-
arate sampling variability from interinstitutional variability.
The latter can be partitioned into a systematic component,
possibly linked to provider characteristics, and a random
component. Finally, there are concerns about the use of z
scores (standardized expected—observed mortality) to clas-
sify hospitals as aberrant. Such an approach labels a pre-
determined proportion of hospitals as aberrant even when
“excess” mortality can be explained by random error. Thus
even if all mortality rates were low and close to each other,
a profiling approach such as HCFA’s would still classify
some hospitals as aberrant. Clearly, algorithms for identi-
fying aberrant providers need to be linked to the outcome
under study and to rely on metrics tailored to the needs of
the particular profiling analysis. Because it seems prudent
to consider several such metrics in a profiling analysis, it
would be advantageous to follow an analytic approach that
makes it possible to compute and evaluate these metrics
within a unified modeling framework.

The statistical literature on methods for profiling
providers is relatively limited. Gillis and Hixson (1991)
examined the appropriateness of HCFA’s quality screen-
ing technique using Monte Carlo methods in which the
outcome depended on both patient-level and hospital-level
characteristics. They defined a high-mortality hospital as
one with observed mortality exceeding predicted mortal-
ity by more than 1.645 standard deviations. Smith (1994)
proposed an analysis of variance (ANOVA) approach to
partitioning variation in mortality rates into patient sever-
ity, quality of care, and random variation but did not dis-
cuss methods for comparing or identify aberrant hospitals.
Stukel et al. (1994) developed estimators for standardized
summary rates and used them to derive an estimate of ex-
cess utilization in the comparison of two areas. More re-
cently, Silber, Rosenbaum, and Ross (1995) examined hos-
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pitals with large standardized differences in observed and
expected rates of death, adverse events, and death following
adverse events for surgical patients. They also evaluated the
importance of patient and hospital characteristics as predic-
tors of outcome by estimating the ratio of the variances in
the two sets of characteristics. The approach of Silber et
al. is valuable in understanding and describing components
of variation in the analysis of differences across providers.
The importance of incorporating provider characteristics
emerges from their analysis, as it did from the earlier work
by Gillis and Hixson (1991) and Smith (1994).

Provider profiling and, more generally, the analysis of
variations in medical care utilization and outcomes has also
been approached using hierarchical regression modeling.
The statistical literature on such models is by now exten-
sive (Gilks, Richardson, and Spiegelhalter 1996; Lindley
and Smith 1972; Longford 1993; Wong and Mason 1985,
1991). In the area of health care research, Gatsonis, Ep-
stein, Newhouse, Normand, and McNeil (1995) and Gatso-
nis, Normand, Liu, and Morris (1993) used a hierarchical lo-
gistic regression model of the form proposed by Wong and
Mason to study variations in angiography rates across states
and to evaluate the effects of contextual variables such as
geographic location and availability of medical care. The hi-
erarchical model allowed for area-specific coefficients in the
patient-level logistic regression model, included area-level
covariates, and was fitted via Gibbs sampling. Shwartz et al.
(1994) used empirical Bayes methods to rank the amount
of random variation across 68 geographic areas in Mas-
sachusetts, but did not include patient- or area-level char-
acteristics in the analysis and did not develop a framework
for identifying high-variation groups. Of more immediate
relevance to hospital profiling and to the methodology dis-
cussed in this article is the work of Thomas, Longford, and
Rolph (1994), who used a logistic regression model with a
random intercept to analyze between-hospital variation in
mortality rates. The model allows for variations in overall
mortality rate among hospitals but assumes that the effect
of patient severity is the same in all hospitals. Thomas et al.
developed an empirical Bayes estimator for the difference
between adjusted and expected hospital mortality rates and
proposed it as an alternative to the estimator used by HCFA.
Finally, Goldstein and Spiegelhalter (1996) used hierarchi-
cal models with aggregated patient data to realistically ac-
count for the uncertainty when comparing institutions.

This article presents an approach to profiling providers
on the basis of posterior tail probabilities of model parame-
ters that can be interpreted as indicators of provider perfor-
mance. Providers may be individual physicians, groups of
physicians, hospitals, health plans, counties, states, or other
meaningful units. The proposed measures can be used to
compare each unit to an absolute (external) or relative (in-
ternal) standard. The measures are constructed on the basis
of a multilevel hierarchical regression model that permits
the analyst to incorporate both patient-level and provider-
level characteristics. Because the performance indicators
are posterior tail probabilities of underlying model param-
eters, they can be computed directly from the simulated
values drawn from the posterior distribution.
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We apply our analytic framework to profiling a set of hos-
pitals on the basis of rates of 30-day mortality for patients
treated in hospitals for acute myocardial infarction (AMI).
In this analysis, risk adjustment is carried out by including
a severity index as a patient-level covariate in a hospital-
specific logistic regression model. We consider several pos-
sible models for describing interhospital variability, includ-
ing the random intercept model used by Thomas et al.
(1994), and evaluate their implications on hospital profil-
ing. Section 2 presents a general framework for profiling
providers; Sections 3 and 4 apply our methods to profiling
of 96 hospitals on the basis of the mortality rates for a co-
hort of 3,196 Medicare patients discharged with a principal
diagnosis of AMI. Section 5 summarizes our methods and
discusses the implications of our proposed framework.

2. AN ANALYTIC FRAMEWORK
FOR PROFILING PROVIDERS

2.1 Modeling Variations Among Patients and Providers

Assume that outcome data are collected on a sample
of patients treated by I providers. For each provider, the
(L + 1)-dimensional vector w; = (wo;, w1y, ..., Wwr,) TEp-
resents provider ¢ characteristics, Y;, represents the out-
come for patient j treated by provider 4, and the (T + 1)-
dimensional vector x;; = (Zoi\ 14y, -.,2T7i;) represents
patient j characteristics, excluding provider characteristics
which are defined herein.

Stage I (patient-level, within-provider model). Let

Yii10;, &, x5 v f(Yiy10., &, x55), (1)
where 0; is a vector of provider-specific parameters and ¢
is a vector of parameters common to all providers. In many
situations 8; will be a vector of regression coefficients spe-
cific to each provider, so that the components of 8; represent
the effects of patient characteristics on outcome for the ith
provider.

Stage Il (between-providers model). The vector 6; of
provider-specific parameters is modeled as a function of
provider characteristics, w;, and is assumed to follow a dis-
tribution parameterized by a vector of hyperparameters, «,

indep.

Oila, o, wi  ~ g(0ia, wi); Pl ~ h(gla).  (2)
It is assumed that 6, is independent of ¢ given « and w;.
The hyperparameter vector, o, may contain a set of regres-
sion coefficients relating the unobserved Stage I provider
parameters, 8,, to the provider covariates, w,.

Finally, a prior, w(a), is assumed for the hyperparam-
eters . We denote the full set of parameters by A =
{a,$,0,; i = 1,2,...,I} and denote the observed data
byy ={vij; j=1,...,n; ¢ = 1,...,I}. The foregoing
class of hierarchical models is fairly general, incorporating,
among others, the mixed models of Laird and Ware (1982);
the Bayesian linear models of Lindley and Smith (1972); the
hierarchical logistic regression model of Wong and Mason
(1985); semiparametric models, such as a hierarchical ver-
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sion of Cox regression, and models with heavy tails, such
as ¢ distributions with low degrees of freedom. Extensions
to more stages in the hierarchy are straightforward to in-
corporate.

The motivation for including the provider characteristics,
w,, in the Stage II model is based on both technical and
subject matter considerations. From a technical standpoint,
the issue is one of correct specification of the model, on
the basis of which performance indices are computed and
predictions made. Consideration of nonexchangeable mod-
els is a natural step in the process of fitting a hierarchi-
cal model that adequately explains the observed variations
among providers. Given the substantial lack of precision
in estimates derived from traditional profiling analyses, the
need for careful modeling is particularly acute. From a sub-
ject matter standpoint, a growing body of empirical evi-
dence suggests that provider characteristics are important
predictors of patient outcomes. For example, evidence of
a relation between hospital characteristics and patient mor-
tality has been provided by several researchers, including
Brennan et al. (1991), Hartz et al. (1989), Kuhn, Hartz, Gott-
lieb, and Rimm (1991), Kuhn, Hartz, Krakauer, Bailey, and
Rimm (1994), and McNeil et al. (1992). In a given profil-
ing analysis, the specific provider characteristics would be
selected on the basis of published research.

2.2 Measures of Absolute and Relative Performance

To introduce our performance indices, define the ex-
pected outcome by the ith provider, adjusting for patient
mix to be

1 & 1 &
pit = o ZE(YéﬂXij,Wi,A) = ZE(Yij|Xij70ia¢)v
j=1 =1
(3)

where the last equality holds because the sampling distri-
bution, f(Y;;|xi;, w;, A), depends only on €; and ¢.

We define the standardized outcome for the ith provider
as the expected outcome if provider i’s patients are treated
at a reference provider. This standardized outcome is
obtained by averaging the expected outcome over the
provider-specific parameters

1
R E(Y;;|x5, W; 0,,)q(6; ) do;
Hi nz;/ ( ]lxjaw ,a,(j)a ’)g( |a,W)
1 &
= ;ZE(YiﬂXij,Qb,a,Wi). @)
lJ=1

If 6, represents a vector of provider-specific regression co-
efficients and « represents a matrix of regression coeffi-
cients linking provider characteristics, w;, to the provider-
specific effects, 6;, then the quantity defined in (4) is the
expected provider-specific outcome if the matrix of stan-
dardized regression coefficients are applied to the n; patient
characteristics at the sth hospital. In contrast, (3) represents
provider ¢’s adjusted outcome when applying its own vector
of effects to its patient population.
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We now define a first performance index based on the
p and 4. Intuitively, a provider’s performance is poor if
the posterior probability that p® — S being bigger than
some benchmark value is “large.” This motivates the fol-
lowing performance index. Let pu*~—S = {uf — pf, ud —
1S, ..., w8 — u3} denote the vector of deviations between
adjusted and standardized provider outcomes. Let H(-) de-
note a “benchmark” function of 5. Then
P = P(uit — i} > H("®)ly) (5)

(3

is the posterior probability that the difference between ad-
justed and standardized outcomes for provider 4 is larger
than some relevant function of the deviations across the
sample of providers. For example, H could be the sum of
the interquartile range and the 75th percentile, which, for
normally distributed populations, would result in the 97.8
percentile; for nonnormal distributions, this value would
correspond to a different percentile. The function H could
also be a constant function, in which case the performance
index P25 would have the interpretation of measuring
provider i’s performance relative to an absolute standard.

The performance index for the ith provider, using the def-
initions of expected and standardized outcomes in (3) and
(4), is conditional on its vector of provider characteristics,
w;. Therefore, the difference u* — 1i$ is the comparison be-
tween the average expected outcome at provider ¢ and the
average expected outcome at a pooled collection of sim-
ilar providers. Although this index provides information
to evaluate how extreme certain providers are relative to
providers of similar characteristics, it may not be as infor-
mative when comparing providers with different covariate
vectors w;. This is because the magnitudes of the differ-
ences between the £ and i§ for such providers are being
measured against different reference groups. Several modi-
fications to this performance index thus may be considered.
One modification is to define a fixed set of provider char-
acteristics, w*, which would serve as the reference set of
provider characteristics in the performance index. In this
case, w; would be replaced with w* in (4), but the model
in (2) would not change. This approach may be useful in
comparing average outcomes at a single type of provider
while still adjusting for patient mix.

A second performance index can be motivated in the
following manner. Rather than compare average adjusted
and standardized outcomes by provider ¢, we can imagine
a particular patient whose treatment would potentially be
given by provider ¢, and consider the probability of an ad-
verse outcome for this specific patient. More formally, let
x* = (x1,22,...,27) denote a fixed vector of patient co-
variates and let Y;* = E(Y'|x*, 6;, ¢) represent the expected
outcome for this patient treated by provider i. Define

Py = P(Y; > K(Y")ly) (6)

where Y* = {Y*,Y5,..., Y} and K(-) is some specified
function of Y*. P} is the posterior probability that the ad-
justed outcome for a patient described by x* at provider ¢
is “large” compared to the adjusted outcomes for similar
patients at all of the providers in the sample. For example,
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if K(y) is the median of y, then P} is the probability that
the adjusted outcome at provider ¢ is larger than the median
adjusted outcome across all providers. When a benchmark
value, 7, is available, then provider’s ¢ performance can be
estimated by P(Y;* > 7).

Choice of performance indices in a given situation de-
pends on the goals of the particular analysis. If one assumes
that the future distribution of patients has the same char-
acteristics across providers, as in the observed data, then
provider performances can be summarized by comparing
the P2~5. But if instead we are interested in comparing
provider performances for particular types of patients (e.g.,
relatively healthy patients, or patients in critical condition),
then comparing providers based on P} for several different
choices of covariate vectors may be more appropriate. We
next demonstrate the proposed performance indices in the
context of profiling hospitals using 30-day mortality rates.

3. PROFILING MORTALITY RATES FOR ACUTE
MYOCARDIAL INFARCTION PATIENTS

3.1 The Study

As part of the restructuring of HCFA’s quality assurance
methods, the U.S. government is collecting detailed clini-
cal, socio-demographic, and administrative data for Medi-
care patients discharged with a principal diagnosis of acute
myocardial infarction (AMI) from hospitals in the United
States. The pilot phase of this data collection effort, known
as the Cooperative Cardiovascular Project (CCP), involved
abstracting medical records for patients discharged from
hospitals located in Alabama, Connecticut, Iowa, and Wis-
consin from June 1992-May 1993 (Ellerbeck et al. 1995;
Normand, Glickman, Sharma, and McNeil 1996). AMI was
chosen because, despite triggering a vast amount of medical
care utilization, it remains a particularly fatal disease in the
elderly. For example, in 1990 mortality among Medicare
AMI patients was 23% at 30 days after infarction, climb-
ing to 36% at 1 year after infarction (Pashos, Newhouse,
and McNeil 1993). Moreover, recent research has shown
that rates of medical and surgical interventions and rates
of mortality in Medicare AMI patients vary greatly across
geographic areas, hospitals, and demographic groups (Gat-
sonis et al. 1995; McClellan, McNeil, and Newhouse 1995;
Pashos et al. 1994). Such variability is notable in a cohort
of patients with uniform insurance coverage and relatively
homogeneous disease status.

The initial study cohort consisted of 3,269 patients hos-
pitalized at 122 hospitals in one of the four CCP pilot
states. After excluding 26 hospitals that treated fewer than 5
AMI patients, we arrived at a final cohort of 3,169 patients
across 96 hospitals. The number of AMI patients per hos-
pital ranged from 5-274, with a mean of 33. The outcome
of interest was mortality within 30 days of hospital admis-
sion. The overall 30-day mortality rate in the sample was
20%. The observed hospital-specific mortality rates ranged
from 0% (5 hospitals) to 67% (1 hospital), with a mean of
22% (Table 1). Patient severity at admission was quanti-
fied by an index used in previous analyses of the full CCP
cohort (see the Appendix). As detailed in the Appendix,
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Table 1. Patient and Hospital Characteristics in the Study Cohort
25th percentile Median Mean 75th percentile
Observed Mortality
Across hospitals .14 .22 .22 .29
Admission severity
Across patients —2.47 —1.80 —1.65 — .99
Across hospitals —1.47 —1.49 —1.47 —1.22
Hospital characteristics % of patients % of Hospitals
Rural (vs. urban) 54 76
Nonacademic (vs. academic) 79 88
Number of beds
<100 (small) 29 64
101-299 (medium) 27 21
>300 (large) 44 15

NOTE: Based on 3,196 Medicare beneficiaries age 65 years and older discharged with a principal diagnosis of AMI between June 1, 1992, and May 5, 1993 from one of 96 hospitals. The

admission severity index quantifies the burden of illness on entry to the index hospital.

the severity index was constructed on the basis of 34 pa-
tient characteristics on admission. Approximately one-half
of the patients had a predicted risk of death less than 14%
= 100{1 + exp(—median severity)}~!, with one-quarter of
the patients having mortality risk greater than 27% (Table
1). Patient severity at admission ranged from —2.27 (or 9%)
to —.29 (or 46%) across the 96 hospitals. In Table 1 rural
hospitals are those not located in a standard Metropolitan
Statistical Area, and nonacademic hospitals have no medical
residents. Hospitals with fewer than 101 beds were classi-
fied as small; those with 101-299 beds, as medium-sized;
and those with 300 or more beds, as large. More than three
quarters of the hospitals were located in rural areas, and
most were nonacademic.

3.2 Hierarchical Logistic Regression Model

The variation in mortality rates among hospitals was
modeled via a three-level hierarchical regression model of
the type proposed by Wong and Mason (1985). At the first
level (within-hospital), the probability of death within 30
days was modeled by the hospital-specific logistic regres-
sion,

logit(P(Y;; = 1)) = Boi + B (severity,; — severity), (7)

where Y;; is the binary indicator of death within 30 days
of admission for patient j at hospital i, severity;; is the
value of the severity index for that patient, and severity =
—1.65. We considered two forms for the second level of the
hierarchical structure (between-hospitals), an exchangeable
model of the form

me () e ((5) 2) @

and a nonexchangeable model of the form

level Ila:

stage IIb:  B3; ~ Ny(I'w}, D),

where

= ( Yoo 7o1

Yo2 Y03 o4 )’ 9)
Y10 Y11

Y12 Y13 Y14

and w; = (rural;, nonacademic;, small,, medium,). The
components of w; are indicator variables that are 1 if the
condition is true and O otherwise. Vague prior distributions
were assumed for I and D at the final level of the model.

In the foregoing formulation of the model, both coeffi-
cients of the logistic regression are allowed to vary among
hospitals. A variable intercept would indicate interhospi-
tal differences in baseline mortality rates. A variable slope
would indicate that the effect of clinical burden (patient
severity) on mortality differs across hospitals. For com-
parative purposes, we also estimated a simple model in
which slopes were the same across hospitals, 31, and inter-
cepts [y; were exchangeable with a N (v, a[%o) distribution.
This model (henceforth referred to as the random-intercept
model) was used in the work by Thomas et al. (1994) dis-
cussed in Section 1. To complete the specification, we as-
sumed proper but vague priors for i, v, and o 5>.

3.3 Model Estimation

Gibbs sampling was used to fit the hierarchical logis-
tic models. The sampler was implemented using the BUGS
(Gilks et al. 1996) software for the random-intercept model.
A single string with a burn-in of 2,000 iterations and a fur-
ther 1,250 iterations were used for inference. A specially
developed Fortran program using rejection sampling tech-
niques (Zeger and Karim 1991) to draw each 3; was used
for the models in which both logistic coefficients were per-
mitted to vary. Starting values for the logistic regression
coefficients were obtained by fitting a separate logistic re-
gression in each hospital. Hospitals for which the maximum
likelihood estimates (MLEs) of 3; could not be determined
using our Newton—Raphson procedure had starting values
imputed from a Bayesian logistic regression analysis on
data for hospital ¢ using a normal prior with mean equal
to the average of the MLEs for the converged hospitals,
and a variance equal to ten times the sample variance of
the MLEs. Starting values for I" and D were obtained by
calculating the sample average and sample variance of the
starting values for the 3;’s. Five parallel strings of length
600 were simulated. Iterations 301-600 were used for in-
ference. Overdispersed starting values for D were used in
the first three strings; the remaining two strings were begun
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at the sample variance of the {35t2'*}. Posterior intervals
based on the empirical distributions were computed for se-
lected parameters.

Convergence of the Gibbs sampler was assessed accord-
ing to three criteria. First, the estimated potential scale
reduction (PSR) for the Gibbs samples of the elements
of 3; and I" were examined across the five strings (Gel-
man and Rubin 1992). Also, a multivariate analog of the
PSR statistic was computed by computing the between-
strings sums of squares for the overdispersed strings us-

ing Sl(ng)h = 17252, (8% - B¥)(B® — BPY, where

B9 = $21(B /1) and B = 12 (B /(m/2)], with k
mdexmg iteration, s indexing string, and ¢ indexing hospi-
tals. The between-strings sums of squares for the remain-
ing two strings, Sl(ov?,, were calculated in a similar manner.
Because ln(|S(k)

low
1n(|S}(]’fg)h|) should decrease with increasing k, convergence
is reached when the two quantities are the same. The two
determinants were plotted to monitor convergence of the
sampler. Finally, an additional string of the sampler was
run out to 20,000 iterations, and the final 1,000 draws were
examined for convergence using the techniques described
earlier. The empirical distributions of the parameters ob-
tained from the long string were compared to that obtained
from our shorter strings to determine convergence.
Precision of parameter estimates was assessed by exam-
ining the lag-1 autocorrelation among the draws. For a lag-
1 autocorrelation among Gibbs draws of r and total num-
ber of draws n, the effective sample size is approximately
n(l — r2). The fit of the within-hospital model [(7)] was
assessed by examining the residuals from a patient-level
logistic regression model. Equation (7) was also fitted sep-
arately to several large hospitals, and goodness-of-fit statis-
tics were calculated. Appropriateness of our level II model
was judged from boxplots of the posterior draws of the level
I parameters plotted against stage II covariates.
Examination of plots of the logarithm of the determinant
of the between-strings sums of squares for the overdis-
persed and underdispersed strings at each iteration sup-
ported our assumption of convergence. Comparison of the
distribution of the draws of parameters from the single long
string (20,000 iterations) to that obtained from the sample
of 1,500 based on the shorter strings indicated that the two
samples had roughly the same coverage. Finally, the esti-

|) should increase with increasing k and

mated PSR were generally within an acceptable range. The -

lag-1 autocorrelations for the draws of the 3; were found
to be negligible. The lag-1 autocorrelations for the draws
of the I" were larger, however, resulting in precisions effec-
tively based on 420 independent observations, large enough
for our inferences.

3.4 Estimation of Hospital Performance Indices

The hospital-specific risk-adjusted mortality rates, u2,
and standardized rates, ,uis, are defined as

ZP Y = 1Bs,xi) =

Z logit™!

xzy /61
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and

1 &
P(Ym = 1T, x5, w;)

xi;w;),

-1 E logit ™ (
n; <
j=1

and were estimated using

,500 n,
z zlogu 8

and
;LS00
N a s (k) o
= 500 ni Zloglt (xi; T ™ w)) (10)
k=1 j=1
where x;; = (1, severity;; — severity), ﬁgk) is the kth draw

of the vector of hospital-specific logistic regression coef-
ficients, ') is the kth draw of the matrix of reference
regression coefficients, and w; = (1, 1) in the exchangeable
model or w; = (1, rural;, nonacademic;, small;, medium;)
in the nonexchangeable model.

Three types of performance indices were estimated: the
probability of excess mortality for the average patient, the
probability of a large difference between adjusted and stan-
dardized mortality, and a z score. The probability of ex-
cess mortality for patients of average admission severity,

= (1,0), at each hospital was estimated as

1,500
1

px _ i1 (3 (k)
P; 1,500;“10’5“( ) >exER)), (1)

where the indicator function, I(-), is 1 if the condition inside
the parenthesis is true and O otherwise, ¢ = 1.5, and f(;“g
is the median of {(logit™*( (k))) i=1,2,...,96}. Because
of the dependence among the parameters in the joint poste—
rior distribution of {8y;;7 =1,2,...,96}, the median, 5 505
depended on the iterations. The value ¢ = 1.5 was chosen
because physicians felt that deviations this large indicated
a potential quality problem.

The posterior probability that the deviation between each
adjusted and standardized hospital-specific mortality rate
was located in the upper tail of the distribution of the ex-

pected differences across all hospitals (Eq. (5)) was esti-
mated as

1,500
~ 1 >
P = = SO IRY > HR®), (1)
! k=1

where

(k) Zloglt ! x”,B(k) Y (x,;, T w?)

Z logit™

96}. We defined H(R®) =
- 5(2165)) with fék) the qth quantile

and R(*) :{R§’”;i:1,2,...,
€8 + 1.5 x (£
of R(),
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Finally, HCFA’s algorithm was also used to define aber-
rant hospitals. A logistic regression model was fitted to
the entire dataset, and > scores were derived from the
standardized difference between observed and expected
mortality in each hospital. Specifically, z;, = n;(Y; —
D)/ Z;" $i;(1 — Pij), where p,, = logit™" (x,,Bure) and
pi = (1/n;) 3°7~, Pi;. Hospitals with z; > 1.645 (the top
5%) were classified as aberrant. Note that although more
appropriate variance formulas for the standardized differ-
ence that account for the correlation between §; and p; are

available (see, e.g., Haberman 1976), we chose to be con-
sistent with HCFA’s algorithm.

4. RESULTS
41

Table 2 displays the estimated posterior means and stan-
dard deviations for the regression parameters using the
exchangeable models described in Section 3.2. The esti-
mates of the average baseline mortality rate were similar.
In particular, a 95% posterior interval for the average in-
tercept oo derived from the full exchangeable model was
(—1.87,—-1.56), corresponding to (.13,.17) in the probabil-
ity scale. The estimates of the average estimated slope in
the full model and the overall slope in the random-intercept
model were also similar.

There was considerable variation among hospitals in both
intercept and slope of the logistic model. Based on the
full exchangeable model, the 2.5 and 97.5 percentiles of

Interhospital Variation

{80 = 1,2,

.,96}|y) is (—2.53,—.92), indicating a
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large range in the log-odds of mortality for an average pa-
tient randomly selected from one of the 96 hospitals in the
sample (see also Fig. 1). The corresponding percentiles for
the estimates of the slopes (3;, were (.62, 1.47), and the
coefficient of variation for the slopes was (Table 2) 20%
(CV = .21/1.03). We concluded that the data demonstrate
substantial variability in the effect of patient severity among
the hospitals in our database, and thus a model allowing the
logistic model slope to vary across hospitals is preferable
to the simple random-intercept model.

Figure 1 displays boxplots of the estimated posterior
mean intercepts, (p;, and the estimated posterior mean
slopes, (1, stratified by the hospitals characteristics listed
in Table 1. There is some evidence that the logistic parame-
ters may not be exchangeable with respect to hospital size,
urbanicity, and academic affiliation. Table 2 also displays
the estimated level II parameter summaries for the nonex-
changeable model [(9)]. In this model, the logistic model
intercept, oo, represents the log-odds of 30-day mortality
across large urban academic hospitals for a patient of av-
erage admission severity and has a 95% posterior interval
given by (—2.15,—1.45). Hospitals located in rural areas
of the state were associated with higher mortality than ur-
ban hospitals (Y01 = .55) for the average patient. Moreover,
some of the variation in the hospital-specific slopes was ex-
plained by hospital size with medium-sized hospitals having
slightly smaller slopes than large hospitals (§14 = —.29).

4.2 Hospital Performance Indices

The risk-adjusted hospital mortality rates, ., varied

Table 2. Regression Estimates

Estimated posterior summaries

Level | Level Il
parameter parameter Mean SD Mean/SD Percentiles (2.5, 97.5)
Exchangeable model: Random-intercept model
Boi: Intercept v: Intercept —-1.70 .07 —24.29 (—1.85, —1.57)
a%o: Variance (.31)2 .05 (.01, .22)
[B1: Severity — severity 1.03 .05 20.60 (.93, 1.13)
Exchangeable model: Random-intercept and slope model
Boi: Intercept ~Yoo: Intercept —-1.72 .08 —21.53 (—1.87, —1.56)
[1i: Severity — severity Y10: Intercept 1.03 .05 19.67 (.94, 1.15)
Estimated posterior mean
o (422 —.03
D: Variance < —.03 (212
Nonexchangeable model: Random-intercept and slope model
Boi: Intercept “Yoo: Intercept —-1.79 A7 —10.29 (—2.15, —1.45)
“Yo1: Rural .55 .20 2.76 (.15, .93)
~Yo2: Non-Academic -.27 27 —1.24 (—.71, .14)
Yo3: Small -.27 .25 —1.06 (—.74, .27)
~Yo4: Medium .29 .20 1.46 (—.10, .67)
[B1i: Severity — severity Y10: Intercept 1.22 13 9.18 (.96, 1.52)
~11: Rural .05 16 .33 (—.27, .36)
~v12: Nonacademic —.11 A7 —.64 (—.44, .23)
~v13: Small —.08 .20 -.39 (—.50, .28)
Y14: Medium —.29 15 —1.88 (—.58, .01)
Estimated posterior mean
o (.35)2 —.03
D: Variance < —.03 (22

NOTE: SD = standard deviation.
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Figure 1. Estimated Posterior Means for Level | Parameters in the

Full Exchangeable Model. Hospital means, calculated as {(1/1,500)

y500 BYii=12...,9;p =1, 2}, are stratified by number
of beds, geographic location of hospital (rural or urban), and teaching
status of the hospital. The width of each boxplot is proportional to the

number of hospitals having each particular characteristic.

from a low of 12% to a high of 44%. Figure 2 displays the
observed, > (y;;/ni), and adjusted, 2, hospital-specific
mortality rates stratified by the geographic location of the
hospital. It is clear from the figure that adjustment for sever-
ity on admission is substantial. Of particular note is the
hospital pictured in the lower right panel of Figure 2 (ur-
ban hospitals), whose observed rate is 29% but whose risk-
adjusted rate is 37%. This hospital is a medium-sized aca-
demic hospital that treated seven patients during the study
period; however, the average admission severity of these
seven patients was —.69 (=~33% on the probability scale).
There also appears to be less variability in changes between
the observed and adjusted mortality rates for urban hospi-
tals than for rural hospitals.

The estimated posterior probability that mortality at the
ith hospital was 1-1 times the median mortality over all
96 hospitals [(11)] ranged from O (five hospitals) to 89%
(one hospital) (see Table 3). Three-quarters of the hospi-
tals in our sample had an estimated probability of less than
16% for this event. Similarly, the estimated probability that
the difference between adjusted and standardized hospital-
specific mortality rates, P*~5, is large [(12)] ranged from
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0 (five hospitals) to 25% (one hospital), with the median
estimated probability 2.7%.

Using HCFA’s algorithm, nine hospitals were flagged
as having potential quality problems (Table 4). There was
moderate disagreement among the criteria for classifying
hospitals as aberrant. Despite this, regardless of which mea-
sure is used (z; > 1.65,Pi*,]32A_S), hospital 1 is ranked as
the worst. This hospital is a rural, medium-sized nonaca-
demic hospital with an observed mortality rate of 35%, an
adjusted rate, 1§, of 28%, and a standardized mortality rate,
f15, of 23%. The average admission severity of patients at
hospital 1, severity,, was —1.87 (13% on the probability
scale), with 25% of the 54 patients having admission sever-
ity larger than —1.19 (23% on the probability scale).

Because PA~S represents the probability that the differ-
ence between observed and expected mortality is unusually
large, this performance index is conceptually closer to infer-
ences based on the z scores than those based on P*. How-
ever, PA~S quantifies how extreme hospitals are relative to
similar hospitals as defined by hospital location, academic
affiliation, and number of beds. Consider hospital 44, which
was identified as one of the worst 5% of the hospitals us-
ing the HCFA algorithm. The posterior probability that the
difference between hospital 44’s adjusted and standardized
(to small rural nonacademic hospitals) outcome is large was
only 5% using our criterion (Table 4: Pﬁ_s = 5, rank = 33).
There are two reasons for these differences. First, Py >
estimates the probability of a large difference between ob-
served and expected mortality at hospital 44 compared only
to small rural hospitals rather than to all hospitals. Second,
because the index P25 is based on the difference between
the “true” values of the parameters, 4y — uj4, and not on
a comparison with the observed value, which is based on
seven AMI patients, p4y is pulled substantially away from
the observed value of 744 = .43 to .20.

Our other performance index, P* estimates the proba-
bility that mortality for a specific type of patient (the av-
erage) who is treated by a provider ¢ is unusually large
even if provider ¢ did not treat such a patient. For example,
the probability that mortality is unusually large for such a
patient is 71% at hospital 10, yet the probability that the
difference between observed and expected mortality is un-
usual at hospital 10, 151%_8, is only 7%. Thus if patients
relied on only one index, then the ultimate choice would
rule out hospital 10 in one case (z-score or P/~5) or not
rule it out in the other (P},). This discrepancy may be ex-
plained by noting that on average, rural hospitals perform
worse than urban hospitals (see Table 2), but hospital 10 is
not unusual among rural hospitals. Examination of the pos-
terior probabilities in this study indicates that there are only
three hospitals (hospitals 1, 28, and 10) for which there is
reasonable confidence (P25 or Py > 0.70) to suspect a
quality problem.

5. DISCUSSION

Profiling medical providers is a multifaceted and data-
intensive process with significant implications for health
care practice, management, and policy. The methodologic
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issues confronting analysts in this area are not trivial, and
simplistic “one-size-fits-all” approaches are not likely to
work (Epstein 1995). Major issues include data quality, de-
tail, and availability; choice of performance measures, for-
mulation of statistical analytic strategies; and development
of approaches to reporting and interpreting the results of
profiling analyses. In this article we focused our attention
on performance measures and statistical strategies for de-
riving reliable estimates.

Because profiling analysis can serve a number of pur-
poses, the choice of performance measures and analytic

strategy will have to be customized. Data availability may
also play a major role. For example, if a reference standard,
such as a national guideline, is available, then it is reason-
able to evaluate providers using an absolute cut-off level of
performance. Unfortunately, such reference standards are
often not available, and comparisons of providers will need
to be made using relative measures of performance. For ex-
ample, we estimated the probability that the risk of death
for a patient of average admission severity was 1-1 times
the median mortality rate for similar patients in the sample.
It is the information regarding the actual magnitude of the
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Table 3. Posterior Probability of Excess Mortality Across 96 Hospitals

Percentile
Index Minimum Mean 25th 50th 75th Maximum
pA=S 0 4.2 7 2.7 5.8 25.4
P 0 11.6 2 3.9 15.2 89.5

NOTE: Table entries are the 100 X the probability of excess mortality, where f’f\ =S P(ﬂf —
i > ¢), where ¢ =£s(i” — Ai) + 1.5 X Interquartile range and P* = P(logit ™ (B,,) >
15 X €spllogit™ " (Bor))).

probability associated with this performance index that is
important for quality improvement activities. For this rea-
son, we feel that ranks are of limited value (Goldstein and
Spiegelhalter 1996) and that efforts need to be directed to-
ward development of indices customized to specific prob-
lems.

The performance measures in this article were estimated
using a unifying statistical approach based on hierarchical
regression modeling. The approach takes into account the
hierarchical structure usually present in data for profiling
analyses and provides a flexible framework for analyzing a
variety of different types of response variables and for in-
corporating covariates at the various levels of the hierarchi-
cal structure. Experience with practical uses of hierarchical
modeling is growing rapidly and the computational tech-
niques and software are becoming broadly available (Gilks
et al. 1996; Goldstein 1995). As showcased in this article,
the hierarchical model can be linked naturally to indices of
provider performance and estimates of such indices can be
derived in the course of fitting the overall model. A broad
variety of performance indices can be accommodated in this
framework, and their estimation and evaluation is carried
out on the basis of the same underlying statistical model.
In addition, hierarchical modeling can be used to address
some key technical concerns in profiling analysis, including
permitting the impact of patient severity on outcome to vary
by provider, adjusting for within-provider correlations, and
accounting for differential sample size across providers.
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The regression framework presented in this article per-
mits risk adjustment using patient-level data and incorpora-
tion of provider characteristics into the analysis. There are
methodological difficulties in implementing both of these
capabilities of the model. The ability to risk adjust using
retrospective data can be hampered by the potential endo-
geneity of the recorded patient-level covariates and the po-
tential for hidden covariates. With regard to the first factor,
it is possible that there are differential error rates associ-
ated with the ability or propensity to record information
across providers. For example, physicians may comment
more frequently in the medical charts at tertiary care hos-
pitals than at small community hospitals. If this is the case,
it might be difficult to separate case mix from the provider
effect. A second potential problem might arise if an im-
portant correlate of outcome is missing from the database.
With retrospectively collected data, it is often possible that
an important severity measure will be missing from the
database, and furthermore, it is likely that the distribution
of this unmeasured covariate will vary across providers. As
a consequence, the magnitude of the difference between the
adjusted and standardized outcome may be exaggerated.
Some of these difficulties could be eliminated by putting
a prospective data collection system in place.

Finally, the consideration of provider characteristics as
possible covariates in the second level of the hierarchical
model is dictated by the need to explain as large a fraction
as possible of the variability in the observed data. Simple
exchangeability across all providers may not be a defen-
sible assumption for many datasets. In such cases more
accurate estimates of provider-specific adjusted outcomes
will be obtained by inclusion of relevant provider charac-
teristics. Subject matter considerations will play a major
role in the choice of covariates and in the interpretation
of the results, because choice of the exchangeable model
afffects the manner in which the 6; are shrunk. For ex-
ample, if the hospital-specific parameters are exchangeable
within rural hospitals and within nonrural hospitals, then
one would expect some shrinkage toward the prior means

Table 4. HCFA Highest and Lowest Ranked Hospitals

Random intercept Random intercept and slope

No. of PA—S PA—S 5
AMI No. Hospital Academic Hospital HCFA P;q P’A i
Hospital patients dead location (Y/N) size Z; Rank (%) Rank (%) Rank (%) Rank

1 54 19 R N M 3.83 1 36 1 25 1 89 1
28 6 4 R N M 2.55 2 10 7 15 3 70 3
2 18 7 R N S 2.55 3 12 5 19 2 32 9
10 62 18 R N M 2.51 4 16 2 7 19 71 2
90 8 4 R N S 2.00 5 15 3 13 55 13 28
43 27 6 R N S 1.95 6 3 43 11 8 22 17
15 81 22 U Y L 1.82 7 9 11 5 26 10 31
44 7 3 R N S 1.75 8 6 20 5 33 11 30
95 22 8 R N S 1.68 9 12 6 14 4 16 21
29 31 5 U N S —-1.75 93 0 84.5 1 74 0 94
39 6 0 R N S -1.77 94 2 54 3 48.5 2 77
19 46 4 U N L —1.80 95 0 90.5 0 90.5 0 94
42 70 11 U Y L —2.01 96 0 94.0 0 94.5 0 94

NOTE: HCFA highest-ranked (z, > 1.65) and lowest-ranked (z; < —1.65) hospitals. The rank of each measure is from worst (1) to best (96). L denotes hospitals with ~>300 beds, M denotes
hospitals with 101-299 beds, S denotes hospitals with fewer than 101 beds, R denotes rural hospitals, and U denotes urban hospitals.
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Table A.1  Admission Severity Variables and Weights Comprising the Admission Severity Index
Xo Bp Xo Bp

Constant 5.5726 LV function proxies:

Socio-demographic: Cardiac arrest .9069
(Age—65) .0681 Gallop rhythm —.0310
(Age—65)2 —.0010 Cardiomegaly —.0094

Admission history: Hx CHF —.1061
Hx cancer —.1740 Rales and pulmonary edema .1520

Admission severity: Laboratory results:

Mobility status Albumin > 3 (g/dl) —.4828
Walked independently —.2740 Albumin missing —.4793
Unable to walk .4700 Log1o[BUN (mg/dl)] 1.0613
Mobility missing .3669 BUN missing 1.4583

Body mass index (kg/m?) —.0259 Creatinine > 2 (mg/dl) .3279
Body mass missing —.1525 Creatinine missing 1937

Respiration rate breaths/min Diagnostic test results:

Respiration (if > 12) .0429 Conduction disturbance .4084

Respiration < 12 3.4840 No EKG (vs EKG reading) .5050

Respiration missing 2.2666 No MI on EKG (vs Ml on EKG) —.1430

Ventricular rate > 100 1564 Anterior MI (vs other MI) 4384

Log10(MAP) —4.7101 Lateral MI (vs other MI) .2908

MAP missing —10.1796 Posterior M| (vs other MI) .6416

Shock 1.6194 Lateral and posterior Ml —.8767

NOTE. Hx = history, MAP = mean arterial pressure; BUN = blood urea nitrogen level. Variables indicate the presence of the condition (coded 1 if present and 0 otherwise) with the exception of
the following seven continuous covariates, which assume the observed values age, body mass, respiration rate, MAP, albumin, BUN, and creatinine The severity index Is calculated as Zpﬁpx,p

for the /th patient.

for rural and nonrural hospitals. But the structure of the
between-provider model is not the only determinant of the
resulting shrinkage. In particular, the estimates for hospi-
tals with relatively large numbers of patients generally will
be pulled only slightly toward the group mean even if they
are quite different from it. In contrast, estimates of hospi-
tals with small numbers of patients are likely to be pulled
strongly toward the group mean if they differ substantially
from the mean. Substantial shrinkage would be justifiable
in such cases, because the raw performance estimates are
bound to be imprecise.

APPENDIX: DEVELOPMENT OF THE ADMISSION
SEVERITY INDEX

A model predicting the log-odds of mortality using covariates
measured within the first 24 hours of admission was developed
in collaboration with a panel consisting of physicians, health ser-
vices researchers, representatives of physician specialty societies,
and other health care organizations. Covariate information stem-
ming from more than 200 variables was retrospectively abstracted
from medical charts and administrative data. A logistic regression
model linking 30-day mortality to admission covariates was es-
timated using a developmental sample of 10,936 AMI Medicare
patients discharged from hospitals located in the four CCP pilot
states and validated on a sample of 3,645 AMI patients from the
same four states using a three-phase procedure. First, stepwise re-
gression models were fitted to subsamples of the developmental
cohort, using 20 random starting models for each subsample. Sec-
ond, the model with the largest likelihood in each subsample was
identified, and a backward selection logistic regression procedure
was used in the developmental cohort using only those covari-
ates associated with models having the largest likelihood. Third,
after assessing model fit, the regression coefficients were reesti-
mated using the full cohort of 14,581 patients. Table A.1 lists the
individual severity variables and their estimated regression coeffi-
cients that resulted from the final model. Admission severity for

the jth patient at the ith hospital in this article was defined as
Z:::l BpX.yp With 3, as specified in the Table A.1 (see Normand
et al. 1996).

[Received December 1994. Revised January 1997.]
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