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Summary. During recent years, analysts have been relying on approximate methods of inference to
estimate multilevel models for binary or count data. In an earlier study of random-intercept models
for binary outcomes we used simulated data to demonstrate that one such approximation, known as
marginal quasi-likelihood, leads to a substantial attenuation bias in the estimates of both fixed and
random effects whenever the random effects are non-trivial. In this paper, we fit three-level random-
intercept models to actual data for two binary outcomes, to assess whether refined approximation
procedures, namely penalized quasi-likelihood and second-order improvements to marginal and
penalized quasi-likelihood, also underestimate the underlying parameters. The extent of the bias
is assessed by two standards of comparison: exact maximum likelihood estimates, based on a
Gauss—Hermite numerical quadrature procedure, and a set of Bayesian estimates, obtained from
Gibbs sampling with diffuse priors. We also examine the effectiveness of a parametric bootstrap
procedure for reducing the bias. The results indicate that second-order penalized quasi-likelihood
estimates provide a considerable improvement over the other approximations, but all the methods of
approximate inference result in a substantial underestimation of the fixed and random effects when
the random effects are sizable. We also find that the parametric bootstrap method can eliminate the
bias but is computationally very intensive.

Keywords: Gibbs sampling; Immunization; Marginal quasi-likelihood; Multilevel logit models;
Parametric bootstrap; Penalized quasi-likelihood; Prenatal care

1. ' Introduction

There is a strong and growing interest among social scientists in understanding the influence
of the social context, such as families and communities, on a wide range of behaviours. This
trend has renewed interest in multilevel statistical models. At the same time, there is an
increased recognition of the need to account for clustering in the complex sample designs that
are used in virtually all social and health surveys. Statistical procedures that ignore clustering
tend to underestimate the variance of the estimated coefficients and can lead to the mistaken
identification of ‘statistically significant’ effects. In addition, in models such as logistic
regression, where the relationship between the response and the predictors is not linear,
ignoring clustering can result in large biases in the parameter estimates themselves, as we
demonstrate later.

In the last decade the estimation of multilevel models has received considerably more
attention than in the past, and various computer programs have been developed for fitting
these models to hierarchically clustered data. In the case of multilevel models for normally
distributed outcomes, maximum likelihood procedures are now readily available (see for
example Rasbash and Woodhouse (1995)). However, in the case of binary responses or count
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data, maximum likelihood procedures have proved to be intractable for all except the
simplest type of multilevel models (such as variance component models) because they involve
irreducibly high dimensional integrals (Breslow and Clayton, 1993). As a consequence, most
analysts have relied on approximate methods of inference, most notably marginal quasi-
likelihood (MQL) (Goldstein, 1991) and penalized quasi-likelihood (PQL) (Breslow and
Clayton, 1993; Schall, 1991).

In earlier work we demonstrated that estimates derived by MQL for binary outcomes can be
subject to substantial bias when the amount of clustering is ‘sufficiently large to be interesting’
(Rodriguez and Goldman, 1995). The magnitude of the bias was assessed by using simulated
data designed to incorporate the hierarchical structure of actual or plausible data sets and
estimating a three-level model with two versions of MQL, involving first-order and second-
order approximations. In response to our study, Goldstein and Rasbash (1996) evaluated
estimates based on PQL and introduced an improved approximation, known as second-order
PQL, that ‘largely eliminates the biases’ in the situation that we had previously described.
Key results from these studies are summarized later.

In this paper we use actual data from a survey in Guatemala to assess the performance of
both the original and the more recently developed approximations. We focus on two binary
outcomes that exhibit moderate and large amounts of clustering at the family and community
levels:

(a) obtaining a complete set of immunizations for children who have received at least one
immunization and

(b) using modern prenatal care for pregnancies where some form of care was used (Pebley
et al., 1996).

We fit three-level variance component models and compare estimates based on first- and
second-order MQL and PQL with two standards: exact maximum likelihood estimates ob-
tained by using a Gauss—Hermite numerical quadrature procedure and a set of Bayesian
estimates obtained by using Gibbs sampling with diffuse priors (Zeger and Karim, 1991). We
also use a parametric bootstrap procedure to reduce the bias of MQL and PQL estimates;
this method was first proposed by Kuk (1995) and has been applied successfully in the
context of two-level models by Goldstein (1996).

In Section 2 we describe the model and the various estimation procedures. In Section 3 we
summarize key results based on our simulated data sets, whereas in Section 4 we present
results based on the actual Guatemalan data. Finally we review and discuss our conclusions
in Section 5. The simulated and actual data can be obtained from

http://www.blackwellpublishers.co.uk/rss/

2. The model and estimation procedures

In this paper we consider a simple multilevel extension of the ordinary logistic model: a
random-intercept (also known as a variance component) model that incorporates random
effects at two hierarchical levels other than the individual, in our case the family and the
community. Let Y;; denote the response of the ith child (pregnancy) of the jth family
(mother) in the kth community. We assume that, given random effects Uy, and Uy represent-
ing unobserved family and community characteristics respectively, the Y;; are independent
Bernoulli random variables with (conditional) expectation 7;;. We further assume that the
logit of this probability satisfies



34
)

Estimation Procedures for Multilevel Models

logit(m;) = Bo + BiXyx + BaX + Bsxy + Uy + U,

where X, X; and X, represent (vectors of) observed characteristics at the individual, family

and community levels, with corresponding fixed effects 3;, 3, and 3;. For estimation pur-
poses we further assume that the random effects are independent and normally distributed,

with
Uy ~ N, 03),
’ (2

U, ~ N(O, o3).

This model is shown as a directed acyclical graph in Fig. 1, which follows the conventions in
Spiegelhalter et al. (1996). Each variable or parameter in the model appears as a node, with
boxes denoting known quantities and ovals denoting unknown quantities. Full arrows denote
probabilistic dependences whereas broken arrows indicate deterministic relationships. The
nested structure of children (or pregnancies) within families within communities is shown by

using stacked sheets.
In the developments below we shall let Y denote the vector of responses and [Y] its
distribution. Similarly, U is the vector of family and community random effects, 3 is the

vector of fixed effects and, with a slight abuse of notation, o is a vector containing the
variance components, or variances of the random effects at the family and community levels.

With this notation, model (1) can be written as a special case of the generalized linear mixed

model, with
logit(w) = X8 + ZU, ?3)

where X is the model matrix for the fixed effects (containing the constant and the observed
covariates) and Z is the model matrix for the random effects (containing 1s and 0Os to select

the appropriate random effects corresponding to each observation).
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Three-level logit model with family and community effects on an individual level binary outcome
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2.1. Maximum likelihood

To fit the multilevel model by maximum likelihood we need to obtain the unconditional
distribution [Y] of the response. To do this we multiply the conditional Bernoulli distribution
[Y|U] of the response given the random effects by the Gaussian density [U] of the random
effects, to obtain the joint distribution

[Y, U] =[Y[U][U],

and finally ‘integrate out’ the random effects to obtain [Y]. It is the last step that requires
numerical integration. We use Gauss—Hermite numerical quadrature, evaluating the condi-
tional distribution [Y|U] by using a 20 x 20 grid of values for Uy and U,. Once the integrals
have been replaced by discrete sums, first and even second derivatives can be obtained in a
laborious but straightforward process. Standard numerical procedures can then be applied.
Often a mixture of steepest descent to improve initial estimates followed by Newton—
Raphson or quasi-Newton iterations works well. This is the strategy that we used to obtain
the estimates reported in Pebley et al. (1996). For further details see Longford (1993).

2.2. Bayesian estimation

Recent developments in Bayesian inference avoid the need for numerical integration by
repeated sampling from the posterior distribution of the parameters using Gibbs sampling, a
technique first used in the context of generalized linear models by Zeger and Karim (1991).
To apply this framework we adopt a Bayesian view, treating the parameters (as well as the
observations) as random variables. We augment our basic model by assigning prior (or
hyperprior) distributions [3] to the fixed effects and [o°] to the variances of the random
effects (strictly speaking, we work with the precisions 1/6?). To obtain Bayesian estimates
that are roughly comparable with maximum likelihood we use non-informative or vague
priors. Specifically, we assume that 5, ~ N(0, 1 /7) with precision 7 = 0.0001 (so the variance is
10000) and that 1/07 ~ I'(e, €) with € = 0.1 (so the mean is 1 and the variance is 10). Almost
identical results were obtained by using a Pareto prior for 1/¢7, which is equivalent to a
uniform prior for o; (see Spiegelhalter et al. (1996), page 38).

We then estimate the model by using the Gibbs sampler as implemented in the software
package BUGS (Spiegelhalter et al., 1996). A good introduction to Gibbs sampling may be
found in Casella and George (1992). Briefly, the Gibbs sampler is a Markov chain Monte
Carlo method for simulating observations from a joint distribution by sampling repeatedly
from the so-called full conditional distributions. In our case we need to sample from the
posterior distribution of the parameters given the data, say [3, o, U|Y]. The Gibbs sampler
tells us that we can sample instead from the three full-conditional distributions

[Blo?, U, Y], [0%8,U, Y] and [U|B, o Y] “)

As shown in Zeger and Karim (1991), the first two distributions further simplify to [8|U, Y]
(i.e. the posterior distribution of the fixed effects depends on the random effects U and the
response Y, but not on the variance components o) and [¢|U] (i.e. given the random effects
U, the response Y and the fixed effects 8 have no further information about the variance
components o). The Gibbs sampler draws observations from each of these distributions in
turn. If 3,, o and U, denote a sample (with k = 0 for starting values) then the Gibbs sampler
generates a new sample drawing 3, from [8|Uy, Y], a,2c+1 from [0?|U,] and finally U, from
[UlBis1s a’iﬂ, Y]. Under reasonably general conditions the distribution of the samples
converges to the desired joint posterior distribution as & — oo. Usually one discards a ‘burn-
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in’ period which is sufficiently long to ensure that the chain has converged to its stationary
distribution and uses the remaining observations to estimate features of the posterior distri-
butions (such as the posterior means) by using standard statistical procedures. Note that
successive observations are not independent.

2.8. Marginal quasi-likelihood
The approximate estimation procedures that are evaluated here can be motivated by con-
sidering a linearized form of the multilevel logit model. Note from the discussion leading
to equation (1) that we can write

Y=7m+e with 7 = f(X3 + ZU), %)

where Y is the vector of individual responses, f is the inverse logit (or antilogit) trans-
formation and e is a heteroscedastic error term with mean 0 and (conditional) variance given
by a diagonal matrix with entries 7(1 — ).

First-order MQL approximates 7 by using a first-order Taylor series expansion of f(-)
around 8 = 3, and U = 0, where 3, is the current estimate of the fixed effects. The expansion
has the structure of a multilevel linear model that can be fitted by using standard algorithms
(e.g. Goldstein (1995)), leading to an improved estimate of 3, which is then used as the new
pivot. The procedure is iterated to convergence. Longford (1994) used a quadratic approx-
imation to the log-likelihood function that is equivalent to first-order MQL and leads to
exactly the same estimates (Rodriguez and Goldman, 1995).

Second-order MQL extends the Taylor series expansion by adding the second-order term
corresponding to the random effects U, but not second-order terms on the fixed effects 3, nor
mixed or cross-product terms. This strategy leads again to an approximating multilevel linear
model that can be fitted by using standard algorithms. See Goldstein (1991) and Rodriguez
and Goldman (1995) for details.

2.4. Penalized quasi-likelihood

It should not be surprising, given the nature of the assumptions underlying MQL (in partic-
ular the expansion about U = 0), that the approximation performs well when the random
effects are small (i.e. their variances are close to 0) but may fail if the random effects are
moderate or large. In Section 3 we provide evidence that MQL results in a substantial bias
even for moderate amounts of clustering.

An alternative procedure that may work better under these circumstances is to use a non-
zero pivot for the random effects in the Taylor series expansion. In particular, we may
expand f(-) about U = U, where U, is the empirical Bayes estimate (or predictor) of the
random effects, defined as the mean of [U|Y] estimated at the current parameter values. For
any given value of U, the resulting approximating model is again a linear multilevel model
and can be estimated by using standard algorithms. The improved estimates of both the fixed
and the random effects are then used to obtain a new approximating linear model, and the
procedure is iterated to convergence.

Breslow and Clayton (1993) termed this procedure PQL because it is related to work by
Green (1987) on semiparametric regression. The same procedure was derived from a Bayesian
perspective by Laird (1978) and Stiratelli et al. (1984) and has been used by Schall (1991).

To improve further on first-order PQL, Goldstein and Rasbash (1996) proposed in-
corporating a second-order term on the random effects (but no second-order terms on the
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fixed effects and no mixed terms). They referred to the resulting procedure as second-order
penalized or predictive quasi-likelihood, or second-order PQL.

All four approximations discussed here, which will be abbreviated MQL-1, MQL-2, PQL-1
and PQL-2, have been implemented in the software package MLn (Rasbash and Woodhouse,
1995) and its successor MLwiN (Goldstein et al., 1998). MQL-1 is also available in VARCL
(Longford, 1994) and PQL-1 has been implemented in HLM (Bryk ez al., 1996).

2.5. The parametric bootstrap

Bootstrapping is a popular technique for assessing the bias and estimating the standard
errors of parameter estimates in a wide variety of models. Kuk (1995) proposed an iterated
bootstrap procedure that has been successfully applied in the context of a two-level logit
model by Goldstein (1996). The basic idea is to generate a number of samples from the model
evaluated at current parameter estimates. The model is then estimated for each of these
samples and the estimates averaged across replications. The difference between the values
used in the simulation and these averages provides an estimate of the bias of the approximate
procedure, which can then be used to correct the parameter estimates. Because the bias
depends on the values of the parameters, several iterations are required. This procedure has
been implemented in the latest version of MLwiN (Goldstein ez al., 1998).

3. The simulation study

Our interest in the estimation of multilevel models for binary outcomes arose from a series of
studies of health care utilization in Guatemala (Pebley and Goldman, 1992; Goldman and
Pebley, 1994; Pebley et al., 1996). Preliminary exploratory analyses had revealed large family
and community level effects in the use of various forms of modern health care, even after
controlling for observed covariates at the individual, family and community levels (Pebley
and Goldman, 1992). Yet more formal multilevel analyses using the software packages
VARCL (Longford, 1994) and ML3 (Prosser et al., 1991), which produced identical
estimates, suggested very small influences of the family and community on the use of health
care.

To resolve the inconsistency between our exploratory and confirmatory analyses, we
decided to validate the estimation procedures used in existing software by running them on
simulated data for which the true parameter values were known. Although we designed 10
sets of simulations with varying hierarchical structures and degrees of clustering, we focus
here on an analysis that used the same structure as the actual Guatemalan data on prenatal
care, with 2449 births pertaining to 1558 mothers who were living in 161 communities. We
created three composite variables capturing characteristics of the pregnancy, mother and
community and set their coefficients to 1. We then added random effects to represent
unobserved characteristics of the mother and community; these were sampled from standard
normal distributions with mean 0 and variance 1. Finally, we simulated binary responses
satisfying model (1). This strategy was used to generate 100 data sets that were then analysed
using VARCL. A full description of the procedure is presented in Rodriguez and Goldman
(1995).

The results shown in Table 1 reveal that first-order MQL is subject to a substantial bias in
the estimation of both the fixed and the random effects. The attenuation in the estimates of
the B-coefficients is of the order of 25%, whereas the underestimation of the family level
random effect is a particularly severe 90%. The estimates based on second-order MQL
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Table 1. Estimates for simulated data using the Guatemala structuret

Effects True value Results from the following methods:
MQL-1 MQL-2 PQL-2

Fixed effects

Individual 1 0.74 0.85 0.96
Family 1 0.74 0.86 0.96
Community 1 0.77 0.91 0.96
Random effects (o)

Family 1 0.10 0.28 0.73
Community 1 0.73 0.76 0.93

tSource: the MQL estimates are from Rodriguez and Goldman (1995) and the PQL
estimates are from Goldstein and Rasbash (1996).

represent an improvement, but remain downwardly biased, with an underestimation of 72%
for the problematic family level effect.

The last column shows second-order PQL estimates, obtained by Goldstein and Rasbash
(1996) from the first 25 of our 100 simulated data sets. These estimates represent a con-
siderable improvement over the earlier approximations, especially for the family level effect.
The fixed parameter estimates are now within 4% of their true values, and the community
level standard deviation is within 7%, but there remains a 27% bias in the estimate of
variation at the family level. Goldstein and Rasbash (1996) also obtained estimates from
PQL-1 and PQL-2 (not shown in Table 1) based on 200 simulations of the same data
structure that is used for Table 1. Their results for PQL-2 agree closely with the values shown
in Table 1; their estimates for PQL-1 lie between those for MQL and PQL-2.

Commenting on the comparisons presented in Table 1, Goldstein and Rasbash (1996)
noted that

‘the example chosen is based on large underlying random parameter values’

and added that

‘in the more common case where variances in a random intercept model do not exceed about 0.5 the
first-order PQL model can be expected to perform well, and for smaller variances the first-order
MQL model will often be adequate’.

The problem with this recommendation, however, is that in practice we are unlikely to know
the true magnitude of these effects. In fact, a naive application of MQL would have led us to
conclude that the family effect was less than 0.5, and therefore that MQL estimates were
adequate. (A better strategy will be proposed in Section 5.)

4. Estimates from actual data

The simulated data used to generate Table 1 had indeed been designed to represent substantial
degrees of clustering, with standard deviations of 1 for the family and community random
effects, corresponding to intrafamily and intracommunity correlations of 0.38 and 0.19
respectively. However, our subsequent application of exact maximum likelihood procedures
to data derived from the 1987 National Survey of Maternal and Child Health in Guatemala
(Ministerio de Salud Publica y Asistencia Social and Instituto de Nutricion de Centro
América y Panama, 1989) revealed even higher degrees of clustering of health behaviours.
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Based on six distinct (binary) outcome variables related to the use of health care during
pregnancy or immunization of young children, the estimated standard deviations ranged
from 2.3 to 7.4 at the family level, and from 1.0 to 4.6 at the community level, corresponding
to intrafamily correlations between 0.66 and 0.95 and intracommunity correlations between
0.11 and 0.51 (Pebley et al., 1996).

Although surprising to many analysts, these results are consistent with the exploratory
analyses by Pebley and Goldman (1992) mentioned earlier and raise the question of the
extent to which even the improved approximations can be trusted under these conditions. To
examine this question we consider two outcomes that represent the range of clustering of
health behaviour observed in the Guatemala study:

(a) obtaining a complete set of (eight) immunizations among children who receive at least
one immunization and

(b) using modern prenatal care (i.e. doctors or nurses) among women who use some form
of prenatal care.

4.1. Complete immunization

For this analysis we focus on 2159 living children (ages 1-4 years) who had received some
immunization and analyse whether they had received a full set of immunizations, as a
function of individual, family and community characteristics. These 2159 children come from
1595 families living in 161 communities (resulting in average numbers of children per family
and community of 1.4 and 13.4 respectively). This outcome exhibits the smallest degree of
clustering at both the family and the community levels of the six outcomes analysed in Pebley
et al. (1996).

Table 2 shows parameter estimates obtained by using ordinary logistic regression analysis,
the four approximate procedures discussed earlier, maximum likelihood and Gibbs sampling,
as well as bootstrapped PQL estimates. To keep Table 2 manageable we do not report the
standard errors. However, t-ratios for the maximum likelihood estimates may be found in
Pebley et al. (1996) and indicate that the effects of child’s age, husband’s education, rural
residence and proportion indigenous are statistically significant. The other variables were
retained for comparability with the original study, which included them because they had
been hypothesized to affect immunization and had been shown to be associated with other
health-related outcomes.

Unlike in the analysis of the simulated data described earlier, there is no ‘truth’ against
which we can assess alternative estimates derived from actual data. For this paper we use
two standards for comparison: maximum likelihood estimates obtained via Gauss—Hermite
quadrature and Bayesian estimates based on Gibbs sampling using non-informative priors.
The fact that these two methods lead to similar estimates provides an informal validation of
their use as a bench-mark.

Broadly speaking, the results of first-order MQL are very similar to those of ordinary
logistic regression, with the sole exception of the coefficients of ethnicity, which change from
positive (but not significant) to negligible. Second-order MQL produces a modest improve-
ment; the fact that all coefficients increase in absolute magnitude suggests less attenuation
than with MQL-1. First-order PQL produces results that are very similar to those of second-
order MQL. Second-order PQL, however, shows less attenuation than the other three
approximate methods. We started each of these procedures from the estimates obtained in
the last step of the previous method. They all converged fairly quickly except for second-
order PQL, which took 64 iterations.
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Table 2. Estimates for the multilevel model of complete immunization among children receiving any
immunizationt

Effects Results for the following methods:
Logit MQL-1 MQL-2 PQL-I PQL-2 PQL-B Maximum Gibbs
likelihood
Fixed effects
Individual
Child age > 2 years] 0.95 0.93 1.11 0.98 1.44 1.80 1.72 1.84
Mother age > 25 years -0.08 —-008 —-0.10 -—-0.09 -—-0.16 —0.19 —0.21 —0.26
Birth order 2-3 -0.08 —-0.09 -0.11 -010 —0.19 -0.15 —-0.26 —0.29
Birth order 4-6 0.09 0.13 0.15 0.13 0.17 0.27 0.18 0.21
Birth order > 7 0.15 0.19 0.23 0.20 0.33 0.39 0.43 0.50
Family
Indigenous, no Spanish 028 —0.04 —005 —-0.05 —-0.13 —0.06 —-0.18 —0.22
Indigenous Spanish 0.22 0.01 0.01 0.00 —0.05 0.03 —0.08 —0.11
Mother’s education primary 0.25 0.21 0.25 0.22 0.34 0.42 043 0.48
‘Mother’s education secondary 0.30 0.22 0.27 0.23 0.34 0.46 0.42 0.46
or better
Husband’s education primaryj 0.29 0.28 0.34 0.30 0.44 0.57 0.54 0.59
Husband’s education secondary ~ 0.21 0.25 0.31 0.27 0.41 0.47 0.51 0.55
or better
Husband’s education missing 0.03 0.02 0.02 0.02 0.01 0.07 —0.01 0.00
Mother ever worked 0.25 0.19 0.24 0.20 0.31 0.37 0.39 0.42
Community
Rural} —-0.50 —-047 —-0.57 —-0.50 —-073 —0.93 —0.89 —0.96
Proportion indigenous, 1981} -0.78 —-0.64 —-0.78 —0.67 —095 —1.21 —1.15 —1.22
Random effects
Standard deviations o
Family e 0.63 0.72 0.73 1.75 2.69 2.32 2.60
Community e 0.53 0.55 0.56 0.84 1.06 1.02 1.13
Intraclass correlations p
Family —— 0.17 0.20 0.20 0.53 0.72 —0.66 0.71
Community — 0.07 0.07 0.07 0.10 0.10 0.11 0.11

1The reference categories are child aged 1 year, mother’s age less than 25 years, birth order 1, Ladino, mother no
education, husband no education, mother never worked and urban residence.
{Fixed effects significant at the 5% level according to the maximum likelihood analysis.

The column labelled maximum likelihood reports the estimates obtained by Gauss—
Hermite quadrature. We note in passing that numerical integration requires working in the
scale of the likelihood rather than the log-likelihood, as is customary, and that special care
must be taken to avoid a substantial loss of precision in calculating probabilities that can
differ by several orders of magnitude. We used the optimization routines built into S-PLUS,
using functions written in C to evaluate the log-likelihood and its first and second derivatives.
In practice we found the best results by using analytic first derivatives and numerical second
derivatives, but we used analytic second derivatives in evaluating asymptotic standard errors
after convergence. We also discovered that we needed to use 20 quadrature points at each
level to attain an acceptable precision in our calculations. Note that the maximum likelihood
estimates are as large as (in absolute magnitude) or larger than the PQL-2 estimates.

The final column reports estimates obtained by using the Gibbs sampler. We started the
sampler from the maximum likelihood estimates which, given the diffuse nature of the priors,
should be reasonably close to the posterior mode. Expecting quick convergence we used a
burn-in run of 200 samples and then ran the sampler for 1000 iterations. A preliminary
analysis of the results, however, revealed very slow mixing and poor convergence —
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particularly for the parameters representing the variance components —so we restarted the
sampler using the last seed and ran it for an additional 4000 iterations. (This is a computer-
intensive procedure, taking 5 h on a Sun Sparcstation 20 computer under light load con-
ditions.) A battery of diagnostic tests indicated that the longer run was adequate for our
purposes. In particular, we used Geweke’s (1992) procedure to test for convergence of each
chain. We also ran the gibbsit software of Raftery and Lewis (1992, 1996) to check that we
had enough iterations to estimate each posterior cumulative distribution function evaluated
at the 95% credible limits within 0.0125 with probability 0.95. We also calculated the
efficiency of the Markov chains for estimating the posterior mean of each parameter by using
the method of Roberts (1996), ensuring that we had the equivalent of at least 100 independ-
ently and identically distributed observations in the worst case where the efficiency of the
chain was estimated to be as low as 2%.

Fig. 2 provides a flavour of the type of output that was obtained from the Gibbs sampler.
We have selected three fixed effects, one each from the individual, family and community
levels, and the two random effects. Fig. 2(a) shows traces of the sampled values for a chain of
5000 iterations, after discarding the burn-in of 200. Fig. 2(b) shows the posterior densities,
estimated from the 5000 samples by using a kernel smoother with bandwidth equal to 25% of
the data. The first pair of plots corresponds to mother’s age less than 25 years. This variable
was selected because it is very well behaved. The trace plot shows the type of homogeneous
mixing that is desirable. The second variable is the indicator of mother’s primary education
and is reasonably well behaved. The third pair of plots corresponds to the proportion
indigenous in 1981 and was selected because it is one of the worst-behaved fixed effects. The
fourth pair of plots corresponds to the standard deviation of the family random effect and
shows an anomaly known as ‘slow mixing’, where the sampler appears to drift from highs to
lows, rather than quickly covering the sample space. We believe that this problem is due in
part to the small number of children per family, and it might be ameliorated by using a more
informative prior. The standard deviation of the community random effect is much better
behaved, although it tends to exhibit some peaks. Although we encountered slow mixing, the
efficiency calculations described above indicate that the chain is sufficiently long to provide
useful estimates for the comparisons that are presented in this paper.

The results reported in Table 2 are the empirical means of the last 5000 iterations. (Note
that, although the Bayesian model is formulated in terms of the precision of the random
effects, we monitored and plotted the standard deviation, calculated as the reciprocal of the
square root of the precision.) The results of Gibbs sampling are in general agreement with the
results from the maximum likelihood analysis, confirming the fact that we have substantial
clustering at both the family and the community levels. In fact, the Bayesian analysis suggests
that the standard deviations of the random effects could be even larger than estimated by
maximum likelihood.

The general pattern of results indicates that the approximate procedures are subject to a
substantial bias, with PQL being generally less biased than MQL. Consider, for example, the
effect of husband’s primary education, which according to the maximum likelihood analysis
is significant at the 5% level. The estimated odds ratio (exponentiated coefficient) contrasting
primary with no education increases from 1.33 in the ordinary logit regression to 1.56 using
PQL-2, the best available approximation, to 1.72 according to maximum likelihood and 1.80
based on the Gibbs sampler. Similar remarks apply to the variance components. The estimate
of the intrafamily correlation is 0.17 by the simpler approximation (MQL-1) and 0.53 by the
best available approximation, when in fact the true value appears to be around 0.66-0.71. The
intracommunity correlation is relatively modest and, not unexpectedly, seems to be estimated
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Fig.-2. Trace and density plots for Gibbs samples from the multilevel model of immunization

more consistently than the intrafamily correlation, with estimates ranging from 0.07 for
MQL-1 to 0.10 for PQL-2 and 0.11 for maximum likelihood or Gibbs.

We attempted to correct the bias in the approximation procedures by using the parametric
bootstrap method described by Kuk (1995) and Goldstein (1996) and implemented in
MLwiN. We bootstrapped both the MQL-1 and the PQL-1 estimates, generating replicates
of 100 samples each. We were willing to increase the size of each replicate to 400 samples (as
done in Goldstein (1996)) if the results showed excessive noise, but this proved unnecessary.
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Fig. 3. Trajectories of the bootstrap estimates for the immunization model

We monitored the standard deviations of the family and community random effects, which
increased monotonically from one replication to the next before settling down after about 150
replications, as shown in Fig. 3.

This is an extremely computer-intensive process, with iterations proceeding at a rate of no
more than 10 replicates per hour on a computer with two 450-MHz Pentium II Xeon
processors (although MLwiN uses only one processor). On the positive side, we found that
monitoring the convergence was much simpler for the bootstrap procedure than it was for
Gibbs sampling. The column labelled PQL-B in Table 2 shows the bootstrapped PQL-1
estimates, which were in somewhat closer agreement with the maximum likelihood estimates
than the bootstrapped MQL-1 estimates. The general pattern of results indicates that the
iterated bootstrap, although slow to converge, has successfully corrected the bias.

4.2. Modern prenatal care

The second outcome variable that is analysed here concerns the use of modern prenatal care
among women using some form of prenatal care. This analysis is based on 2449 births (born
in the 5-year period before the survey), pertaining to 1558 mothers who were living in 161
communities (resulting in average numbers of pregnancies per family and community of 1.6
and 15.2 respectively). This hierarchical structure is identical with that used in the simulated
data set described earlier (although, unbeknown to the authors at the time, the latter
incorporated smaller random effects). This outcome exhibits the largest amount of clustering
at the family level (p = 0.95) of the six analyses presented in Pebley ez al. (1996). It also
exhibits a fair amount of clustering at the community level (p = 0.19), but comparable or
higher values are found for other behaviours.

As in the immunization model, the explanatory variables for prenatal care include
covariates at all three levels, although some of the variables differ from those in the previous
model. According to the maximum likelihood analysis, the following effects are statistically
significant: child’s age, mother’s age, ethnicity, mother’s education, husband’s education,
husband’s occupation, presence of a modern toilet, proportion indigenous and distance to the
nearest clinic.

Table 3 shows the prenatal care estimates based on an ordinary logit model, the four
approximations under consideration, maximum likelihood and Gibbs sampling, as well as a set
of bootstrapped PQL-1 estimates. The first-order MQL estimates of the random effects exhibit
a very substantial downward bias, which is only minimally reduced by first-order PQL.
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Table 3. Estimates for the multilevel model of modern prenatal care among women using some form of
prenatal caret

Effects Results for the following methods:
Logit MQL-1 MQL-2 PQL-1 PQL-2 PQL-B Maximum Gibbs
likelihood
Fixed effects
Individual
Child aged 34 years} —-020 —-0.17 —-025 —-0.22 —-044 —0.81 —1.04 —1.33
Mother aged > 25 years} 0.32 0.31 0.38 0.36 0.58 1.35 1.08 1.26
Birth order 2-3 -010 —-0.10 -0.16 —0.13 —-020 —0.49 —0.75 —1.00
Birth order 4-6 -023 -023 —-032 —-026 —031 —097 —0.56 —0.49
Birth order > 7 -019 —-028 —045 —-030 —045 —1.08 —1.08 —1.21
Family
Indigenous, no Spanish} —0.84 —-097 —102 —-122 —-2.18 —4.63 —5.60 —7.54
Indigenous Spanish} -057 —056 —093 —0.67 —1.00 —2.54 —2.62 —4.00
Mother’s education primary} 0.31 0.35 0.59 0.42 0.65 1.64 1.89 2.62
Mother’s education secondary 1.01 0.90 1.06 0.98 1.93 3.81 3.61 5.68
or better]
Husband’s education primary 0.18 0.22 0.32 0.25 0.30 0.95 0.96 1.11
Husband’s education secondary 0.68 0.69 0.85 0.82 1.59 3.07 4.37 4.85
or better}
Husband’s education missing 0.00 0.06 0.07 0.06 0.01 0.16 0.13 0.02
Husband professional, sales, clerk —0.32 —0.40 —0.49 —047 —0.64 —0.60 —0.62 —0.56
Husband agricultural self- —-054 -052 —-066 —062 —086 —1.75 —-1.77 —2.64
employed
Husband agricultural employeef —0.70 —0.27 —0.33 —-0.29 —-0.25 —2.34 —2.67 —-3.77
Husband skilled service -037 -015 -0.19 —-0.18 —0.05 —1.05 —0.80 —1.12
Modern toilet in household} 0.47 0.37 0.57 0.41 0.94 1.72 2.01 2.69
Television not watched daily 0.32 0.27 0.48 0.31 0.53 1.16 1.35 2.03
Television watched daily 0.47 0.33 0.41 0.39 0.67 1.55 1.51 2.05
Community
Proportion indigenous, 1981} —-09 —-097 —-161 —112 —205 —448 —5.01 —6.61
Distance to nearest clinic —-0.01 —-0.01 -0.01 -—-0.01 —0.02 —0.05 —0.05 —0.07
Random effects
Standard deviations o
Family — 1.01 1.74 1.25 2.75 6.66 7.40 10.24
Community — 0.79 1.23 0.86 1.71 3.48 3.74 5.40
Intraclass correlations p
Family — 0.33 0.58 0.41 0.76 0.95 0.95 0.98
Community — 0.13 0.19 0.13 0.21 0.20 0.19 0.21

1The reference categories are child aged 0-2 years, mother’s age less than 25 years, birth order 1, Ladino, mother no
education, husband no education, husband not working or unskilled occupation, no modern toilet in the household
and no television in the household.

1Fixed effects are significant at the 5% level according to the maximum likelihood analysis.

The second-order improvements to these approximations proved to be numerically
unstable and both MQL-2 and PQL-2 failed to converge for the prenatal care data. The
MQL-2 estimates shown in Table 3 correspond to about a dozen iterations starting from the
MQL-1 estimates and were still fluctuating when the procedure aborted with a protection
fault. The PQL-2 procedure appeared to oscillate between two solutions with similar
likelihood values and was stopped after 250 iterations. The alternating estimates of the fixed
effects were similar, except for husband’s and wife’s secondary education, the availability of a
toilet and proportion indigenous. The estimated standard deviations of the random effects
alternated between (2.75, 1.71) and (3:01, 1.49). The estimates shown in Table 3 correspond
to the first set, which has the larger fixed effects, but similar conclusions would result from the
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second set. The results suggest that second-order improvements reduce the bias in the
estimates, particularly in the case of PQL, but the standard deviations of the random effects
are still substantially underestimated, particularly at the family level.

The Gibbs sampler experienced some difficulty in converging with the prenatal care data,
particularly for variance components and for fixed parameters involving relatively small
groups in the higher socioeconomic strata. The application of the battery of diagnostic pro-
cedures described earlier leads us to conclude that a run of 5200 iterations was inadequate.
Calculations based on the gibbsit software suggested that we would need 20000 iterations
to achieve the same precision as in the analysis of immunization, whereas estimates based on
Roberts’s (1996) method indicated that the efficiency of the chain could be as low as 1% for
some parameters. Instead of running just one very long chain, we heeded the advice of Gelman
and Rubin (1992) and ran three additional chains with different starting values. Specifically,
we started two chains at the maximum likelihood estimates of the fixed effects while setting
the precisions of the random effects to values that were close to the first and third quartiles of
their posterior distributions as estimated in the first run. For the third run we set the pre-
cisions close to the medians and varied the estimates of the fixed effects, setting them
alternately to the first and third quartiles of the first run. We were relieved to note a sub-
stantial overlap in the posterior distributions obtained from all four runs. A calculation of the
Gelman and Rubin (1992) criteria as implemented in the S function itsim provides no
evidence against the notion that, although inefficient, the chains have covered the target
distribution. The values reported under Gibbs in Table 3 are pooled estimates based on the
last 5000 observations from each of the four chains. According to our efficiency calculations,
these estimates are at least as precise as the estimates in Table 2.

With only one exception, the maximum likelihood and Gibbs estimates are each larger in
absolute magnitude than any of the approximate estimates, for both the fixed effects and the
standard deviations of the random effects. This result confirms the finding from Table 2 that
non-trivial attenuation bias is associated with all the approximations. These two bench-
marks are less consistent with each other than was the case for immunization, however, with
the Bayesian estimates generally indicating stronger effects than the maximum likelihood
estimates.

Our attempts to correct the bias in the approximation procedures by using the parametric
bootstrap implemented in MLwiN were somewhat less successful than for the immunization
model. Convergence of the iterated bootstrap for both MQL-1 and PQL-1 was excruciatingly
slow, and both runs failed with overflow errors after more than 400 iterations, while the
community and family standard deviations were still somewhat short of the maximum
likelihood estimates. The column labelled PQL-B in Table 3 reports the bootstrapped PQL-1
estimates after 400 replicate sets and shows that most of the bias had been corrected at that
point.

5. Discussion

In this analysis we used data related to health care in Guatemala to evaluate the performance
of several approximate estimation procedures for three-level models of binary outcomes. The
study confirms and extends our earlier results, which were based on simulations designed to
replicate actual data sets (Rodriguez and Goldman, 1995). We find that MQL-1 estimates
differ little from those in ordinary logit models, and that MQL-2 and PQL-1 offer only slight
improvements. PQL-2 provides the best approximation, but the estimates of the fixed and
random parameters continue to be attenuated in comparison with either maximum likelihood
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or Gibbs sampling. Not surprisingly, the attenuation bias is much greater in the model of
modern prenatal care, which incorporates considerably larger family and community effects
than does the immunization model. The bias can be virtually eliminated by bootstrapping
either MQL-1 or PQL-1 estimates, but this procedure proved computationally more intensive
than Markov chain Monte Carlo estimation and failed to converge for the prenatal care
model.

Some analysts find our results concerning the bias unexpected, believing that clustering can
affect the standard errors but not the parameter estimates themselves. This is indeed the case
for so-called marginal or population average models (Zeger et al., 1988), but not for the
conditional or unit-specific models considered here, where we model individual responses
given family and community characteristics. The distinction is immaterial in linear models,
but it is highly relevant in generalized linear models using a non-linear link function such as
the logit or log-link (Goldstein and Rasbash, 1996). Further discussion of marginal models
may be found in Diggle er al. (1994).

Another atypical feature of our results is the sheer magnitude of the estimated random
effects, which are indeed larger than those found in other studies using different outcomes,
such as child mortality (see, for example, Guo and Rodriguez (1992)). It is important to keep
in mind, however, that the behavioural outcomes that were considered here are largely under
the control of the family (e.g. whether or not to seek care from a biomedical practitioner
during pregnancy). It is plausible that families typically behave consistently in deciding how
to treat successive pregnancies or successive children. The relatively large community effects
are consistent with previous hypotheses related to the importance of the availability of health
services, the basic infrastructure and the ethnic and socioeconomic composition of the
community in explaining the use of biomedical forms of health care.

A related concern stems from the fact that we have fairly small clusters at the family level,
with 1.4-1.6 children per family. The properties of maximum likelihood estimators based on
such small clusters are not known and can only be established by using Monte Carlo
simulation. Our finding that estimates from the Gibbs sampler are of about the same mag-
nitude as (or higher than) those from maximum likelihood provides an informal validation
of the maximum likelihood estimates and furnishes us with two standards against which to
assess the approximate procedures.

Given the large intrafamily correlations that we found, particularly for prenatal care, one
may wonder whether we should study the outcome at the level of the family rather than the
child or pregnancy, using binomial models with a random effect at the cluster level and an
additional parameter to allow for underdispersion or overdispersion relative to the binomial
variance. However, such models would assume that children or pregnancies are exchange-
able: within a family the probability of immunization must be the same for all children, and
the probability of prenatal care must be the same for all pregnancies. In particular, this means
that we could not have child or pregnancy level covariates. An important objective of our
original study was to assess the effect of child or pregnancy covariates on immunization and
prenatal care. Moreover, in both analyses we found significant effects at the individual level;
for example children aged 2—4 years are substantially more likely to be fully immunized than
children under age 2 years, everything else being equal. An analysis at level 2 would have
missed these effects.

In the light of the size of the variances of the random effects that underlie our two
examples, our evaluation of MQL and PQL approximations subjects the procedures to rather
stringent tests. Although neither of the examples explored in this paper embodies small
random effects at both the family and the community levels, our earlier simulations suggest
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that all the approximations are likely to work reasonably well in this case. Unfortunately, the
analyst rarely has any information a priori on the degree of clustering in the data. As a result,
it seems hazardous to rely on these approximations.

A strategy suggested by Goldstein and Rasbash (1996) is to compare MQL-1 and PQL-1
estimates and to accept them if they are similar. Unfortunately, a small difference is not
necessarily indicative of a lack of bias. In Table 2, for example, the standard deviation of the
community effect changed from 0.53 for MQL-1 to 0.56 for PQL-1, a small change that
provides no indication that the maximum likelihood estimate is in fact 1.02, almost double
the value. A better strategy is to calculate all four approximate procedures, where a small
range would be a more reliable indicator of a small bias. Better still, we recommend com-
puting PQL-1 estimates and running five iterations of the bootstrap. If the trajectories of
the estimates remain flat, the PQL-1 estimates can be deemed satisfactory; otherwise the
bootstrap should be continued to convergence or one should shift to Bayesian estimates by
using Gibbs sampling.

These findings also suggest that further research is needed to provide the analyst with
adequate tools for the efficient estimation of multilevel models for binary or count data.
Maximum likelihood estimation needs to be validated for small clusters and implemented
more widely. The numerical quadrature procedures that were used here can be applied to
random-intercept models, but computer-intensive procedures such as Monte Carlo inte-
gration are probably unavoidable for more complex random-coefficient models. The recent
work by McCulloch (1997) on Monte Carlo variants of the EM and Newton—Raphson
algorithms for generalized linear mixed models provides promising avenues for further work.
Although Bayesian methods are not yet generally accepted in the social science research
community, the use of vague or uninformative priors has certainly made them more attractive.

Finally, for most analysts the lack of generally available software can be a crucial deterrent
to the adoption of new estimation techniques. Maximum likelihood estimation of random-
effect models for binary responses can be accomplished by using numerical quadrature.
This technique was first used in the package Egret (Statistics and Epidemiology Research
Corporation, 1995) for two-level random-intercept logit or probit models and has been
implemented for more general models in the new package aML (Lillard and Panis, 2000).
However, Bayesian estimation using the Gibbs sampler is available for a wide variety of
multilevel models—including both random-intercept and random-coefficient models—in
the package BUGS (Spiegelhalter et al., 1996), and convergence diagnostics can be calculated
by using a set of S-PLUS functions (Best et al., 1996). The current version of MLwiN
(Goldstein et al., 1998) provides implementations of the Metropolis algorithm as well as the
parametric bootstrap procedure. These methods, however, are computationally intensive and
therefore not suitable for exploratory work; the approximations studied here, and also
available in MLwiN, may be invaluable in this regard.
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