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SAS PROC MIXED is a flexible program suitable for fitting multilevel models,
hierarchical linear models, and individual growth models. Its position as an
integrated program within the SAS statistical package makes it an ideal choice
for empirical researchers and applied statisticians seeking to do data reduc-
tion, management, and analysis within a single statistical package. Because the
program was developed from the perspective of a “mixed” statistical model
with both random and fixed effects, its syntax and programming logic may
appear unfamiliar to users in education and the social and behavioral sciences
who tend to express these models as multilevel or hierarchical models. The
purpose of this paper is to help users familiar with fitting multilevel models
using other statistical packages (e.g., HLM, MLwiN, MIXREG) add SAS PROC
MIXED to their array of analytic options. The paper is written as a step-by-step
tutorial that shows how to fit the two most common multilevel models:
(a) school effects models, designed for data on individuals nested within natu-
rally occurring hierarchies (e.g., students within classes); and (b) individual
growth models, designed for exploring longitudinal data (on individuals) over
time. The conclusion discusses how these ideas can be extended straighfor-
wardly to the case of three level models. An appendix presents general strate-
gies for working with multilevel data in SAS and for creating data sets at
several levels.

As multilevel models, hierarchical models and individual growth models
increase in popularity, the need for credible and flexible software that can be
used to fit them to data increases. In their 1994 review of the five major software
programs that were then currently available, Kreft, de Leeuw and van der
Leeden (1994) found that only one (BMDP-5V) was integrated into a multipur-
pose statistical package. The remaining four required users to conduct prelimi-
nary data reduction and data processing in a different package before outputting
data files to the specialized packages for analysis. Although the last few years
have seen improvements in the front-ends of the two most popular packages—

Thanks are due to Russ Wolfinger of SAS Institute who read and commented upon a
previous version of this paper and to three anonymous reviewers.
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HLM (Bryk, Raudenbush, & Congdon, 1996) and MLwiN (Prosser, Rasbash, &
Goldstein, 1996)—many users have sought the inclusion of routines for fitting
multilevel models into the major statistical packages themselves.

In 1992, SAS Institute introduced one such routine—PROC MIXED—into
their large menu of offerings. In subsequent releases, SAS has updated and
expanded the models and options available as part of PROC MIXED to the point
that it is now a reasonable choice for researchers fitting many types of multilevel
models. Although the documentation for PROC MIXED is complex (SAS
Institute, 1992, 1996), and the defaults are often not appropriate for many
models (Latour, Latour, & Wolfinger, 1994; Littell, Milliken, Stroup, & Wolfin-
ger, 1996), the abilty to do data reduction, management, and analysis in a single
software package makes this routine particularly attractive to a wide range of
researchers.

Because PROC MIXED was developed from a distinctly different perspective
than that employed by most statisticians and empirical researchers in the educa-
tional, social, and behavioral sciences, its syntax and programming logic may
appear unusual to people in these fields (Ferron, 1997). Unlike HLM and
MLwiN, which were written with the kinds of models used by social scientists
in mind, PROC MIXED was written by agricultural and physical scientists
seeking a generalization of the standard linear model that allows for both fixed
and random effects (McLean, Sanders, & Stroup, 1991). Although it is not
immediately obvious based upon the documentation provided by SAS, it is
indeed the case that by properly specifying the mixed model, a data analyst may
fit a variety of specific instances of the multilevel models, hierarchical models,
and individual growth models that have become so popular in educational and
behavioral research (Kreft, 1995; Hox & Kreft, 1994).

The purpose of this paper is to show educational and behavioral statisticians
and researchers how they can use PROC MIXED to fit many common types of
multilevel models. Rather than try to cover a broad array of models (without
providing sufficient depth for the reader to understand the logic behind the
syntax), I focus on two of the most common models: (a) school effects models,
designed for data on individuals nested within naturally occurring hierarchies
(e.g., students within classes, children within families, teachers within schools);
and (b) individual growth models, designed for exploring longitudinal data (on
individuals) over time. In addition, because the use of PROC MIXED does not
obviate the need for substantial data processing in preparation for analysis, in the
appendix [ present general strategies for working with multilevel data in SAS
and for creating data sets at several levels.

Multilevel models can be expressed in at least three different ways: (a) by
writing separate equations at multiple levels; (b) by writing separate equations
at multiple levels and then substituting in to arrive at a single equation; and
(c) by writing a single equation that specifies the multiple sources of variation.
Bryk and Raudenbush (1992) specify the model for each level separately, and
their software program (HLM) never requires you to substitute back to derive a
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single equation specification. Goldstein (1995) expresses the multilevel model
directly using a single equation, and his software program, MLwiN, works from
that single level representation. PROC MIXED also requires that you provide a
single level representation. For pedagogic reasons, in this paper I take the
middle ground, initially writing the model at multiple levels (kept here to two)
and then substituting in to arrive at a single equation representation.

To use this paper effectively, a basic understanding of the ideas behind
multilevel modeling, hierarchical modeling, and individual growth modeling is
helpful. Both Bryk and Raudenbush (1992) and Hox (1995) provide excellent
introductions to these topics. In particular, the reader must understand: (a) the
difference between a fixed effect and a random effect; (b) the notion of multiple
levels within a hierarchy; (c) the notion that the error variance-covariance
matrix can take on different structures; and (d) that centering can be a helpful
way of parameterizing models so that the results are more easily interpreted.

This article does not substitute for the comprehensive documentation avail-
able through SAS, including the general PROC MIXED documentation (SAS
Institute, 1992, 1996), Getting Started with PROC MIXED (Latour, Latour, &
Wolfinger, 1994), and The SAS System for Mixed Models (Littell et al., 1996).
My goal is simply to provide a bridge to users already familiar with multilevel
modeling because the SAS documentation is thin in this regard. I have found
that PROC MIXED’s flexibility has led many an unsuspecting user to write a
program, obtain results, and have no idea what model has been fit. The goal for
the user, then, is to specify the model and to learn the syntax necessary for
ensuring that this is the model being fit to the data.

Two-Level School Effects Models

I begin by presenting an overview of strategies for using PROC MIXED to fit
classic two-level school effects models. By two-level school effects models, I am
referring to situations in which you have data at two levels within an organiza-
tional hierarchy—such as students within classes or classes within schools—and
you would like to examine the behavior of a level-1 outcome as a function of
both level-1 and level-2 predictors.

To achieve some continuity with presentations of these models available
elsewhere, I use the High School and Beyond data example that Bryk and
Raudenbush (1992) include in the 1996 version of HLM for Windows (Bryk et
al., 1996). Readers unfamiliar with this example should consult Chapter Five of
Bryk and Raudenbush (1992) for a fuller description. The data set consists of
information for 7,185 students in 160 schools (with anywhere from 14 to 67
students per school). The student-level (level-1) outcome is MATHACH. The
student level (level-1) covariate is SES. There are two school-level (level-2)
covariates. One is an aggregate of student level characteristics (MEANSES); the
other is a school-level variable (SECTOR). MEANSES and SES are centered at
the grand mean (they have means of 0). SECTOR, a dummy variable, is coded 0
and 1.
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I begin by fitting an unconditional means model, examining variation in
MATHACH across schools. I then sequentially examine the effects of a school-
level (level-2) predictor (MEANSES) and a student level (level-1) predictor
(student SES). Having examined each type of predictor separately, I conclude
this section of the paper by combining both types of predictors into a single
model. Wherever possible, I use the notation used by Bryk and Raudenbush
(1992). Readers more familiar with Goldstein’s (1995) notation will need to
make periodic translations.

Unconditional Means Model

The unconditional means model can be viewed as a one-way random effects
ANOVA model. Although there are several different ways to write this model,
one common approach expresses the outcome, Y,;, as a linear combination of a
grand mean p, a series of deviations from that grand mean (the «;) and a random
error associated with the i"" student in the j* school (r,):

=Rt where

1
o~ iid NO,7p0) and r;~ iid N(0,0%) M

This model has one fixed effect (p) and two variance components—one repre-
senting the variation between school means (7o) and the other representing the
variation among students within schools (). You can fit this model in PROC
MIXED quite easily using the following syntax:

proc mixed;

class school;
model mathach = ;
random school;

Rather than parameterize the model this way, however, consider an alternative
approach—a two-level approach—that generalizes more easily to more complex
models. This strategy expresses the student-level outcome Y;; using a pair of
linked models: one at the student level (level-1) and another at the school-level
(level-2). At level 1, we express a student’s outcome as the sum of an intercept
for the student’s school (Bo;) and a random error (r;;) associated with the it
student in the j™ school:

Y;=Bo+r;  wherer;~ N®Oqo? (2a)

At level 2 (the school level), we express the school level intercepts as the sum of
an overall mean (7yy,) and a series of random deviations from that mean (uo)):

Boj =Yoo + to;, Where ug; ~ N(0,700) (2b)

Substituting (2b) into (2a) yields the multilevel model:
Yii="Yoo + U, + r; where

2 3
up; ~ N(0,799) and r;~ N(0,0°)
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Notice the direct equivalence between the model in (1) and the model in (3).
The grand mean p is now represented by vy, the effect of school (the a) is now
represented by u,;, and the residual associated with the i student in the j™
school remains r;;. This model can be partitioned into two parts: a fixed part,
which contains the single effect -y, (for the overall intercept) and a random part,
which contains two random effects (for the intercept u,; and for the within-
school residual r;;). We fit this model to data to estimate both the fixed effect vy,
(which tells us about the average MATHACH score in the population) and the
two random effects, 7, (which tells us about the variability in school means)
and o? (which tells us about the variability in MATHACH within schools).

Although it may not be immediately obvious, the model in (3) postulates that
the variance and covariance components take on a particular form. First, because
we have not indicated otherwise, we are assuming that the r;; and the u,; are
independent. Second, if we combine the variance components for the two
random effects together into a single matrix, we would find a highly structured
block diagonal matrix. For example, if there were three students in each class,

we would have:
( TootT?  Too T 000 \

0 0 0
To  Tootd? T 000 0 0 0
Too T  Tooto?> 000 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 4
0 0 0 .0 0 0
0 0 0 000 Tot+o? Ty Too
0 0 0 000 Ty Teto® Ty
K 0 0 0 000 Too  Tooto?

If the number of students per class varied, the size of each of these submatrices
would also vary, although they would still have this common structure. The
variance in MATHACH for any given student is assumed to be To, + 0. This
structure is known as compound symmetry. The covariance of MATHACH
scores for any two students in a single class is T,,. The covariance of MATH-
ACH scores for any two students in different classes is 0.

The representation of the multilevel model in (3) leads to an alternative
specification of the unconditional means model in PROC MIXED. The syntax is:

proc mixed noclprint covtest:
class school;
model mathach = /solution;
random intercept/sub=school;
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After invoking the procedure and identifying any categorical variables (using the
CLASS statement), the MODEL statement specifies the fixed effects and the
RANDOM statement specifies the random effects. Let’s examine this syntax in
detail by focusing on its two major parts: the structural part (the first two lines)
and the modeling part (the second two lines).

Structural specification. The NOCLPRINT option on the PROC MIXED
statement prevents the printing of the CLASS level information giving the
numbers of schools involved in the analysis. The first time you run the program,
you might not want to include this option to ensure that all relevant groups are
included in the analysis. The COVTEST option on the PROC MIXED statement
tells SAS that you would like hypothesis tests for the variance and covariance
components (described below). This option is not necessary if you are running a
version of SAS prior to 6.12. The CLASS statement indicates that SCHOOL is a
classification variable whose values do not contain quantitative information.

Model specification. You use the MODEL statement to indicate fixed effects
and the RANDOM statement to indicate random effects. The MODEL statement
here may appear odd because it seems as if it has no predictors. In reality, it has
one implied predictor, the vector 1, which represents the intercept. The
/SOLUTION option asks SAS to print the estimates for the fixed effects. PROC
MIXED, like HLM, includes an intercept by default. Other programs, such as
MLwiN and Hedeker’s MIXREG (Hedeker & Gibbons, 1996) require you to
specify the intercept explicitly. If you would like to fit a model without an
intercept, however, it is very easy: just add the option /NOINT to the model
statement.

The RANDOM statement is crucial and its specification is usually the tricki-
est part about fitting mixed models. By default, there is always at least one
random effect, here the lowest-level (within-school) residual r;;- (This is similar
to the default random effect in a typical regression model, representing the error
term.) By specifying the intercept on this RANDOM statement, we are indicat-
ing the presence of a second random effect—that the INTERCEPT in the
MODEL statement (which is not explicitly present but implied) should be
treated not only as a fixed effect (represented by vy,,) but also as a RANDOM
effect (represented by 7y,). The SUB= option on the RANDOM statement
specifies the multilevel structure, indicating how the level-1 units are divided
into level-2 units. Here, the subgroups are designated by the classification
variable SCHOOL. Without this statement, the model fit would not be that in (3)
above, but would rather be Yi="oo+ r;- In other words, the variance compo-
nent representing the effect of school (for the uy; which has variance 74,) would
be omitted.

The results of fitting this model are presented below. For comparison, exam-
ine the equivalent model fit using HLM (Bryk and Raudenbush 1992; pp.
62-66).
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REML Estimation Iteration History

Iteration Evaluations Objective Criterion
0 1 34899.608417
1 2 33913.503461 0.00000109
2 1 33913.484655 0.00000000

Convergence criteria met.
Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error Z PR > |Z]

INTERCEPT 0.21992178 8.60965741 1.07782320 7.99 0.0001
Residual 1.00000000 39.14872611 0.66065147 59.26 0.0001

Model Fitting Information for MATHACH

Description Value

Observations 7185.000

REML Log Likelihood -23558.4

Akaike's Information Criterion -23560.4

Schwarz's Bayesian Criterion -23567.3

-2 REML Log Likelihood 47116.79

Solution for Fixed Effects

Parameter Estimate Std Error DDF T PR > |T|
INTERCEPT 12.63698083 0.24433777 159 51.72 0.0001

Interpreting the output of fitting an unconditional means model. First notice
that the model converged quickly. PROC MIXED is a very efficient program
making it particularly nice for fitting of a wide range of models. (Of course, as
models become more complex, they can take a while to converge. Imbalance
can also increase the computational time.)

The next section presents the Covariance Parameter Estimates. These are
estimates for the random effects portion of the model. In this case, we find that
the estimated value of 7, = 8.6096 and the estimated value of o2 =39.1487.
(Differences between these estimates and those presented in Bryk & Rauden-
bush, 1992, are due to the computational improvements between the two pack-
ages. The differences between HLM 4.0 for Windows results and these results
are much smaller). Hypothesis tests presented in this section indicate that both
variance components are significantly different from 0 (although these tests may
not be very reliable)'. These estimates suggest that schools do differ in their
average MATHACH scores and that there is even more variation among students
within schools. (The variance component within school is nearly five times the
size of the variance component between schools).

Another way of thinking about the sources of variation in MATHACH is to
estimate the intraclass correlation, p. This is equivalent to expressing the
variance-covariance matrix in (4) in correlation form, with 1’s on the diagonal
and p on the appropriate off-diagonal elements. We estimate p, which tells us
what portion of the total variance occurs between schools, as:
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A

Too 8.6096 _
Toota?  8.6096 + 39.1487

p= 18

This tells us that there is a fair bit of clustering of MATHACH within school.
This suggests that an OLS analysis of these data would likely yield misleading
results.”

The next section presents information that can be useful for comparing the
goodness of fit of multiple models with the same fixed effects but different
random effects.> The two criteria likely to be the most helpful are the AIC
(Akaike’s Information Criterion) and the SBC (Schwarz’s Bayesian Criterion).
Models that fit better will have values of these statistics that are larger. (Note
that when these values are negative, as they are here, lower numbers in absolute
values are preferred.) Both penalize the log-likelihood for the number of param-
eters estimated, with the SBC taking a higher penalty for increased complexity.
Without a model against which we can compare these statistics they are not very
useful. As you fit models with different specifications for the random effects, as
I do later in this paper, changes in these statistics help assess differences in
goodness of fit (also see Littell et al., 1996).

The last section presents parameter estimates for the fixed effects. As there is
only one fixed effect, the intercept, the estimate of 12.64 tells us the average
school-level math achievement score in this sample of schools. (Note, this is not
the same as the average student level achievement score.)

Including Effects of School Level (level 2) Predictors

The unconditional means model provides a baseline against which we can
compare more complex models. We begin with the inclusion of one level-2
variable, MEANSES, which indicates the average SES of the children within the
school. Remember that MEANSES has a mean of 0 (it is centered about the
grand mean), which facilitates interpretation of the intercept term vy,,. Thus, our
first conditional model, in which MATHACH is expressed as a function of
school-level SES can be written as:

Y;=Botr; and Bo;="ve+ Yo MEANSES;+ uy;
where r;; ~ N(0,0%) and u,; ~ N(0,7¢0)

Substituting the level-2 equation into the level-1 equation yields:

Y;; = [Yoo + Yot MEANSES; ] + [uy; + r;; ] 5)
To emphasize that this combined model is the sum of two parts—a fixed part
and a random part—I have separated the two components using brackets [ ].
The two terms in the first bracket represents the fixed part, consisting of the two
gamma terms. The two terms in the second bracket represent the random part,
consisting of the u,; (which represents variation in intercepts between schools)
and the r;; (which represents variation within schools). As before, we estimate
these random effects through their respective variance components, Ty, and o>,
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Notice that the only difference between the conditional model in (5) and the
unconditional model in (3) is the addition of an extra fixed effect for
MEANSES. Therefore, the MODEL statement, which identifies the fixed ef-
fects, must change to incorporate the predictor. The RANDOM statement, which
identifies the random effects remains the same.

We fit the model in (5) using the following code:

proc mixed noclprint covtest;

class school;

model mathach = meanses/solution ddfm=bw;
random intercept/sub=school;

Notice that nothing has changed except for the MODEL statement, which now
includes the additional fixed effect for MEANSES. Here, for simplicity, I restrict
attention to a single level-2 variable. Additional school level predictors can be
included as fixed effects by appending the variable names to the MODEL
statement. The other change is the option /DDFM=BW. This option asks SAS to
use the “between/within” method for computing the denominator degrees of
freedom for tests of fixed effects. Further details on this option are given in
Littell et al. (1996) and SAS Institute (1996, pp. 565-566).

Here is the output:

REML Estimation Iteration History

Iteration Evaluations Objective Criterion
0 1 33999.764766
1 2 33759.813934 0.00000000

Convergence criteria met.

Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error 7 Pr> |Z]

INTERCEPT 0.06730855 2.63565706 0.40364376 6.53 0.0001
Residual 1.00000000 39.15783186 0.66081390 59.26 0.0001

Model Fitting Information for MATHACH

Description Value
Observations 7185.000
REML Log Likelihood -23480.6
Akaike's Information Criterion -23482.6
Schwarz's Bayesian Criterion -23489.5
-2 REML Log Likelihood 46961.28

Solution for Fixed Effects

Parameter Estimate Std Error DDF T Pr>|T|
INTERCEPT 12.64945599 0.14921620 158 84.77 0.0001
MEANSES 5.86349698 0.36130302 158 16.23 0.0001
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Tests of Fixed Effects
Source NDF DDF Type III F Pr > F
MEANSES 1 158 263.37 0.0001

Interpreting the output with a single level-2 predictor. Because there are
now fixed effects (other than the INTERCEPT) to be estimated, the output
includes an additional section presenting relevant hypothesis tests for the fixed
effects. This Tests of Fixed Effects section can be helpful when you include a
CLASSification variable [a variable that you want represented as multiple
dummies] as a fixed effect and you would like a pooled test across all the levels
of that variable. If you would like to suppress this additional section (as we do in
subsequent illustrative programs in this paper) simply add the option NOTEST
to the MODEL statement.

Fixed effects information. The term for the INTERCEPT, 12.65, estimates
Yoo, the school mean math achievement when the remaining predictors (here,
just MEANSES) are 0. Because MEANSES is centered at the grand mean (with
a mean of 0), vy, is the estimated MATHACH in a school of “average
MEANSES.” The term for MEANSES, 5.86, provides our estimate of the other
fixed effect, v,,, and tells us about the relationship between math achievement
and MEANSES. Schools that differ by 1 point in MEANSES differ by 5.86
points in MATHACH. Its standard error of 0.36 yields an observed t-statistic of
16.22 (p < .0001), which indicates that we reject the null hypothesis that there is
no relationship between a school’s SES and the math achievement scores of its
students.

Covariance parameter estimates. These tell us about the random effects. We
now estimate Ty, to be 2.65 and o to be 39.16. Although we have used the same
symbols in models (3) and (5) to represent these variance components, note that
they have very different meanings. In the previous model, there were no predic-
tors, so these were unconditional components. Having added a predictor, these
are now conditional components. Notice that the conditional component for the
variance within school (the residual component representing o?) has remained
virtually unchanged (going from 39.15 to 39.16). The variance component
representing variation between schools, however, has diminished markedly (go-
ing from 8.61 to 2.64). This tells us that the predictor MEANSES explains a
large portion of the school-to-school variation in mean math achievement.

One way of measuring how much of the variation in school means is ex-
plained by MEANSES is to compute how much the variance component for this
term (7o) has diminished between the two models. As discussed by Bryk &
Raudenbush (1992, p. 65), we compute this as (8.61 — 2.65)/8.61, which yields
.69, or 69%. We interpret this by saying that 69% of the explainable variation in
school mean math achievement scores is explained by MEANSES. (Note that
this is not the same as a traditional R? statistic. This percentage only talks about
the fraction of explainable variation that is explained. If the amount of varia-
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tion between schools is small, we might be explaining a large amount of very
little! For further discussion, see Snijders and Bosker, 1994.)

Having explained 69% of the explainable variation, you might also want to
know whether there is still any variation in school means remaining to be
explained. The output provides two windows on this question. The first is the
test for the residual variance component for intercepts, which rejects the null that
Too 1S O with a z-statistic of 6.53 (p <.0001). Although this test is not very
reliable, it suggests that even after including MEANSES, there is additional
explainable variation present. The second window is to compute the residual
intraclass correlation, the intraclass correlation among schools “of comparable
SES.” Once again, we estimate the intraclass correlation as that fraction of the
sum of both variance components that occurs at the school level (i.e.,
2.63/[2.63 + 39.16]), which is 0.06. We can view this residual intraclass correla-
tion as a partial correlation, which tells us about the similarity in math achieve-
ment among students within schools after controlling for the effect of
MEANSES.

Including Effects of Student-Level (level-1) Predictors

I illustrate the effect of including student level predictors by initially examin-
ing a model with only one student-level predictor (SES). To ease interpretation,
and to focus on those features of the procedure unique to the inclusion of level-1
predictors, I exclude level-2 predictors in this formulation. After reviewing the
steps necessary for including level-1 predictors, I fit a combined model.

Begin by thinking about what the model to include a student level predictor
might look like. One simple model might be:

Y;i=Bo;+ By SES;;i + ryjs
goj‘ j Yoo + U (6)
;i ="Yiot Uy,

where r; ~ N(0,0%) and (Z?ﬁ) ~N [(8> ’ (:(1)3 :(1):)]

This model differs from the simple unconditional model in (3) in three important
ways. First, we have included a single level-1 predictor, SES. Second, having
included this additional fixed effect, we have also included an additional random
effect. Thus, not only are we stipulating that a student’s math achievement score
is related to his or her SES, but also that the relationship between SES can vary
across schools. (If we did not want to allow this slope coefficient to vary across
schools, we could have “fixed” it by eliminating the term u, ,; from the equation
for the slope B,;.) Third, having allowed the intercepts and slopes to vary across
schools, we now have a larger tau matrix to represent the random effects across
schools. Not only are there elements representing the variance components for
both the intercept and slope, there is also a covariance component, representing
the correlation between intercepts and slopes (1,o).
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Although this model can be fit easily in PROC MIXED, I have chosen not to
present the code for doing so because of an issue about interpretation arising
from the model parameterization. Consider the interpretation of the betas in
equation (6). Across the full sample, SES has a mean of 0. (It is grand-mean
centered.) Therefore, B, represents the average math achievement for a student
of average SES across the full sample. It does not represent the average math
achievement for students in school j (controlling for SES). As we add predictors
to our model, we would like to see how these conditional school means relate to
these other predictors. (Consider, for example, the interpretation of the effects of
MEANSES presented in the previous section.) To render the parameters more
interpretable, and to lead to a model in which we have both level-1 and level-2
predictors, we can rescale SES to be centered about its school mean, by comput-
ing CSES;; = SES;; — MEANSES,. Unlike some specialized software programs
(e.g., HLM) which ask whether you want to center variables, the data analyst
must be proactive when using PROC MIXED. Given the misconceptions and
misunderstandings surrounding the rationale behind centering and the effects of
the different forms of centering (Kreft, de Leeuw, & Aiken, 1995), some might
argue that this provision (or lack thereof) is an advantage of this program.

Let us therefore consider the following model representing the effect of a
level-1 predictor:

Y, =Bo;+ By (SES; — SES) +r,,

BOj =Yoo t+ 4o (7a)
Bii=Yio+u

where r;; ~ N(0,0%) and (Z(l)j) ~N [(8> ’ (:% 2:)]

which can be rewritten as:

Yij="oo + oy + (Y0 + u; ) (SES;; — SES)) + 1,
= [Yoo + Y10(SES;; — SES)] + [ug;+ u,(SES;; — SES) +r;}]
with the assumptions as specified in (7a). This model ‘wo fixed effects (an
intercept and a slope for centered SES) and three random effects: for the
intercepts (registered by the u)), for the slopes (registered by the «,,), and for
the students within schools (registered by the r;)).
We write the PROC MIXED code for fitting this model by specifying the

fixed effects on the MODEL statement and the random effects on the RANDOM
statement as:

(7b)

proc mixed noclprint covtest noitprint;

class school;

model mathach = cses/solution ddfm=bw notest;
random intercept cses/sub=school type=un;

The NOITPRINT option on the PROC statement tells SAS not to print the
iteration history (done here to save space). The MODEL statement includes the
fixed effect for CSES, the centered SES variable. (Remember that the intercept
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is included by default; the notest option suppresses the printing of additional
hypothesis tests for the fixed effects.) Notice that the RANDOM statement has
changed quite a bit from its simpler specification. Now there are two random
effects—one for the INTERCEPT and one for the CSES slope. (Remember that
the third random effect, for the r;;, which represents the variation within-school
across students, is included by default.) In addition, we have added an option
specifying the structure of the variance-covariance matrix for the intercepts and
slopes. The structure specified, UN, indicates an unstructured specification,
which allows all three parameters to be determined by the data. This specifica-
tion is common in school effects analyses. In many other multilevel analyses,
you may want to try alternative specifications. I discuss this further when
describing methods for fitting individual growth models. In addition to the
general PROC MIXED documentation, this topic is also addressed in Wolfinger
(1996) and Murray and Wolfinger (1994).
The output from this procedure is:

Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error ZPr > |Z|

INTERCEPT UN(1,1) 0.23642291 8.67686615 1.07855368 8.04 0.0001
UN(2,1) 0.00138287 0.05075209 0.40619222 0.12 0.9006
UN(2,2) 0.01890945 0.69398853 0.28078887 2.47 0.0135
Residual 1.00000000 36.70061535 0.6257511358.65 0.0001

Model Fitting Information for MATHACH

Description Value

Observations 7185.000

REML Log Likelihood -23357.1

Akaike's Information Criterion -23361.1

Schwarz's Bayesian Criterion -23374.9

-2 REML Log Likelihood 46714.24

Null Model LRT Chi-Square 1065.704

Null Model LRT DF 3.0000

Null Model LRT P-Value 0.0000

Solution for Fixed Effects

Parameter Estimate Std Error DDF T Pr > |T|
INTERCEPT 12.64934611 0.24445234 159 51.75 0.0001
CSES 2.19319235 0.12825918 7024 17.10 0.0001

Interpreting the output from models with level-1 predictors. Focus first on the
fixed effects. The estimate for vy, (12.65) indicates that the estimated average
school mean math achievement score, controlling for student SES, is 12.65. The
estimate for vy, (2.19) indicates that the estimated average slope representing
the relationship between student SES and math achievement is 2.19. The stan-
dard errors for both these parameter estimates are very small, resulting in large
t-statistics and low p-values. We conclude that, on average, there is a statistically
significant relationship between student SES and math achievement scores.
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The covariance parameter estimates tell us how much these intercepts and
slopes vary across schools. Although SAS presents these estimated variance-
covariance components in list form, we may rewrite the first three elements in

the list as:
(foo o ) ~ (8.68 0.05)
f1o i1 0.05 0.69

So, 8.68 tells us about the variability in intercepts, 0.69 tells us about the
variability in slopes, and 0.05 tells us about the covariance between intercepts
and slopes. Estimated standard errors and tests of the null hypotheses that each
of these components is O are given in the remaining columns of the list. What do
we see? First, that the intercepts are very variable; in other words, schools do
differ in average math achievement levels even after controlling for the effects
of student SES. Second, that the slopes are also variable (variance component of
.69). We reject the null that this variance component = 0 with p = .0135. Third,
there is little correlation between intercepts and slopes (covariance component
0.05, p =.9006). In other words, there is no evidence that the effects of student
SES on math achievement differ depending upon the average math achievement
in the school.

How much of the within school variance in math achievement is explained by
student SES? Just as we compared the variance component for Ty, in the
unconditional and conditional models (presented in the previous two sections),
s0, too, can we compare the estimates for o for the unconditional and condi-
tional models. Returning to the output on page 7 we find an unconditional
estimate of 39.15. Here we have a conditional estimate of 36.70. Inclusion of
student level SES has therefore explained (39.15-36.70)/39.15 = 0.06, or 6% of
the explainable variation within schools. Comparatively speaking, then, school
SES explains much more of the variation in school level math achievment than
does student SES explain the within-school variation in student level achieve-
ment. When interpreting these results, however, the previously mentioned cau-
tions about the term “explained” variation in the context of multilevel models
remain, and even escalate. Interested readers should consult Snijders and Bosker
(1994) for a fuller discussion of this issue.

Including Both Level-1 and Level-2 Predictors

Having separately specified models with either just level-1 predictors or
level-2 predictors, we can now consider models which contain variables of both
types. Although simplicity would have us fit a model with just the effects of
student SES and school SES, to achieve parallelism with Bryk and Raudenbush
(1992), we also add in the effects of a second school level variable, SECTOR,
coded as O for public schools and 1 for Catholic schools.

Begin by thinking about how you would want to specify the model to be fit. I
strongly advise you to write the model out, interpreting each of the parameters,
before writing code to fit the model. As models get more complex, it is not
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always obvious how to parameterize the model so that the output can be used
directly to answer your research question. In the previous section, for example,
we saw the gains that come from centering student SES within school only after
writing out a model in which student SES was not centered. I find it helpful to
write separate models at the two levels and then combine them together to yield
the single level representation required for PROC MIXED.

Consider the following model:

Y, =Bo;+ By, (SES;; — SES)) +r,,

Boj =Yoo + YoiMEANSES; + Yy0,SECTOR; + uy,,

B1;="Yio + YUMEANSES; + v,,SECTOR; + u,;,

whre 7, N0 and (17) [ (0). (72 )]
Notice the similarities between this model (which includes both level-1 and
level-2 predictors) and the previous model (eq 7) that included only a level-1
predictor. The level-1 part of the model remains the same (because there is just
the one level-1 predictor), but each part of the level-2 part of the model now has
two additional fixed effects. The number of random effects remains the same.
The number of random effects may be increased if an additional level-1 variable
is added to the model.
We can combine the level-1 and level-2 equations together to yield:

Y;; =Yoo + YW MEANSES; + ¥5,SECTOR, + v,o(SES;; — SES))
+ Y1, MEANSES(SES,; — SES)) + v,,SECTOR/(SES,; — SES)) (8b)
+ ug; + u, {SES;; — SES) +r,;

Having written out a combined equation, we can now write the requisite PROC
MIXED code. Each fixed effect on the first two lines of the equation in 8b must
appear in the MODEL statement (because this is where fixed effects are indi-
cated) and each random effect (on the last line of equation 8b) must appear in
the RANDOM statement. By default, SAS includes an intercept as a fixed effect
on the MODEL statement and a within-group random effect (for the r;) on the
RANDOM statement. Interaction terms may be easily specified in the MODEL
statement by using an asterisk (*) between the relevant variables. The code:

(8a)

proc mixed noclprint covtest noitprint;
class school;
model mathach = meanses sector cses meanses*cses
sector*cses/solution ddfm=bw notest;
random intercept cses/type=un sub=school;

yields the output:

Covariance Parameter Estimates (REML)

Cov Parm Ratio Estimate Std Error ZPr > |Z]
INTERCEPT UNC1,1) 0.06485969 2.38172336 0.37171728 6.41 0.0001
UNC2,1) 0.00524422 0.19257382 0.20451479 0.94 0.3464
UN(2,2) 0.00276060 0.10137258 0.21381009 0.47 0.6354
Residual 1.00000000 36.72116429 0.6261333158.65 0.0001
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Model Fitting Information for MATHACH

Description Value
Observations 7185.000
REML Log Likelihood -23251.8
Akaike's Information Criterion -23255.8
Schwarz's Bayesian Criterion -23269.6
-2 REML Log Likelihood 46503.67
Null Model LRT Chi-Square 220.5683
Null Model LRT DF 3.0000
Null Model LRT P-Value 0.0000

Solution for Fixed Effects

Parameter Estimate Std Error DDF T PR > |T|
INTERCEPT 12.11358496 0.19880323 157 60.93 0.0001
CSES 2.93876223 0.15509265 7022 18.95 0.0001
MEANSES 5.33911631 0.36929107 157 14.46 0.0001
SECTOR 1.21667252 0.30637896 157 3.97 0.0001
CSES*MEANSES 1.03887054 0.29890063 7022 3.48 0.0005
CSES*SECTOR —-1.64258263 0.23979107 7022 -6.85 0.0001

Interpreting the output of fitting models with both level-1 and level-2 predic-
tors. Begin with the fixed effects. All are significantly different from O
(p <.001). As SECTOR is a dummy variable indicating whether the school is a
public school or a Catholic school, it can be helpful to rewrite a pair of fitted
models, one for each sector, by substituting in the values of 0 and 1 for
SECTOR:

Publicc MATHACH = 12.11 + 5.34 MEANSES + 2.94 CSES
+ 1.03 MEANSES*CSES
Catholic: MATHACH = 13.33 + 5.34 MEANSES + 1.30 CSES
+ 1.03 MEANSES*CSES

The main effect of SECTOR tells us that the intercepts in these two models are
significantly different. The interaction between CSES and MEANSES tells us
that the slopes for CSES differ depending upon the MEANSES of the school;
the interaction between CSES and SECTOR tells us that the slopes for CSES are
significantly different in the two sectors. (I should note that I tested to see
whether there was a two-way interaction between MEANSES and SECTOR and
a three way interaction between MEANSES, CSES, and SECTOR and found
none.)

We could use these equations to graph the results of the multilevel model (as
done with these data by Bryk & Raudenbush, 1992, p. 73). Because the variable
MEANSES has a grand mean of 0, and CSES is centered at its school mean, the
six parameter estimates have easy and direct interpretations. The average public
school math achievement score is 12.11; the average Catholic school score is
13.33. At average values of student and school SES, these means are signifi-
cantly different. Student and school level SES are associated with math achieve-
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ment in both sectors, although the magnitude of the student effect differs across
sectors. There is also an interaction between student and school SES. In both
sectors, the slope for student SES is higher in schools with higher mean SES
levels.

The findings with respect to the random effects are a bit different. The
variance component for intercepts (7q,) remains significantly different from 0,
suggesting that there is additional variation in school mean achievement levels
that is not explained by these three factors and their interactions. Were this an
actual analysis, you would interpret this finding as reason to believe that there
are additional school level factors that might explain the variation in school
means.

The variance component for slopes, in contrast, is very small (.10), and the
null hypothesis that the slopes do not differ across schools cannot be rejected
(p = .64). Similarly, the component representing the covariance between inter-
cepts and slopes is also small (.19) and we cannot reject the null hypothesis that
it, too, is 0 (p = .35).

These findings suggest that a simpler model, in which the intercepts vary
across schools but the slopes do not may provide a reasonable fit to these data.
We would fit such a model as follows:

proc mixed noclprint covtest noitprint;
class school;
model mathach = meanses sector cses meanses*cses
sector*cses/solution ddfm=bw notest;
random intercept/sub=school;

Notice that the fixed portion of the model (on the MODEL statement) has
remained unchanged. The random portion, however, is now simpler, involving
only random intercepts, not slopes. This simplification, which leaves us with
only one explicit random effect, allows us to drop the TYPE = UN option from
the random statement. Because the fixed portion of the model is unchanged, we
can now use the goodness-of-fit statistics to compare the two models. Fitting
this model to the data, we find:

AIC SBC ~2LL
random intercepts and slopes —23,2558 —23,269.6 46,503.67
random intercepts —23,2544 -23261.3 46,504.79

Recalling that we want larger values of the AIC and SBC, it appears that a
model in which we do not treat the slopes as random (the second model)
provides a better fit. Both the AIC and SBC are larger with this more restricted
model, and the change in the —2LL is only 1.12. An approximate test of the null
hypothesis that this change is 0 is given by comparing the differences in the
—2LL’s to a x? distribution, here on two degrees of freedom (to correspond to
the two additional parameters).* This conclusion is identical to that reached by
Bryk and Raudenbush (1992, p. 76), in their analysis of these data.
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Individual Growth Models

There are several ways you can fit individual growth models in PROC
MIXED. One approach uses a RANDOM statement (as illustrated in the school-
effects analyses). An alternative approach uses a REPEATED statement (which
mimics classical repeated measures analysis of variance). Although experienced
users tend to prefer the latter approach, I begin with the former approach,
because it is easier to see the parallels between the school effects models
presented in the previous section and the individual growth models under
discusssion here. I then turn to the use of the REPEATED statement.

An Unconditional Linear Growth Model

Let’s begin with a simple two-level model, in which the level-1 model is a
linear individual growth model, and the level-2 model expresses variation in
parameters from the growth model as random effects unrelated to any person-
level covariates. By convention (and to facilitate extension to a 3-level model in
which individuals within groups are tracked over time), we represent the param-
eters in the level-1 (within person) model using 7 and the parameters in the
level-2 (between-person) model using B. Thus, we may write the level-1 and
level-2 models as:

Y, = mo+m,; (TIME),; + r;, where r;~ N(0,0°)
and (9a)
Toj = Boo + Upj» (u0j> ~ [(0) (Too 701)]
;= Bio + Uyjs where u; N{lo)- Tio Tii

]
which can be written in combined form as:

Y;i=[Boo+ Bi1oTIME;]] + [ug;+u,TIME; +r;] (9b)

Notice the direct parallels with the model used for the school effects analysis in
(7b). As before, the multilevel model is expressed as the sum of two parts: a
fixed part, which contains two fixed effects (for the intercept and for the effect
of TIME) and a random part, which contains three random effects (for the
intercept, the TIME slope, and the within person residual r;j). Notice that this
formulation treats both the intercept and slope as random effects (although this
assumption can be changed), and that there are no level-2 covariates (this, too,
can be changed).

To fit this model, you must first create a person-period data set in which each
individual has one record for every time-period that he or she is observed. (SAS
code to create person-period data sets is presented in the appendix.) With this
data set, the syntax to fit the individual growth model using PROC MIXED
looks quite similar to that for fitting a school-effects analysis with a single
level-1 predictor and random intercepts and slopes:
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proc mixed noclprint covtest;
class id;
model y = time/solution ddfm=bw notest;
random intercept time/subject=id type=un;

Notice the similarity between this code and that for the school effects analysis.
The CLASS variable has changed from SCHOOL to ID to indicate that the data
represent multiple observations over time for individuals. This CLASS variable
is used on the RANDOM statement to indicate that when the random effects are
specified, we want to allow both intercepts and slopes to vary across people.

The MODEL statement indicates what type of growth model is to be fit. Be
sure to consider a range of alternative options in specifying the growth model,
and be careful about coding the variable TIME. As we saw in the school effects
analysis, the interpretation of the intercept differed depending on how the within
person variable (student SES, in our example) was expressed. Similarly, the
intercept in the growth model can be specified in such a way that it represents
initial status (by coding TIME = O for the first wave of data), average status (by
centering TIME) or even final status (by coding time using negative numbers
and letting O represent the last wave). If there are three or more waves of data,
models allowing for curvilinear growth might be considered.

The RANDOM statement indicates the random effects that you want to
include in your model. As with the school effects analysis, this is probably the
most difficult statement to write correctly. By default, there is one random effect
in the model, for the r;, representing variation within persons. To fit an indi-
vidual growth model, two additional sources of variation need to be included: in
the INTERCEPTs and in the slopes for TIME. The options after the / indicate
how to structure the variance-covariance matrix representing these sources of
variation.

e The SUBJECT=option (alias for SUB in school effects analyses) indicates
that the data set is composed of a set of different “subjects.” Subjects are
assumed to be independent of each other; hence, the SUBJECT=ID com-
mand indicates that the variance covariance matrix for the random effects is
to be block diagonal, with identical blocks.

e The TYPE=option specifies the structure of these diagonal blocks. Specify-
ing TYPE=UN indicates that you would like to treat the variance-covariance
matrix for the intercepts and slopes as unstructured, with a separate variance
(or covariance) component for each of the elements. The unstructured option
indicates that you would not like to place any structure on the variances for
intercepts and variances for slopes (they can be different, which is usually
essential as they are not likely to be identical!) and that you would not like to
impose any structure on the covariance between these two either.

I illustrate the results of this analysis using the data presented in Willett
(1988) on the growth in opposite naming task on four occasions for 35 individu-
als. TIME is coded 0, 1, 2, and 3, so that the intercept estimates the (true) value
of opposite-naming skill at occasion O (initial status) and the slope estimates the
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rate of change in (true) opposite-naming skill across occasions. This judicious
coding of TIME (the level-1 predictor) is done for the same reason student level
SES was centered in the school effects analysis presented earlier. By choosing
an appropriate scale for TIME, the parameters of the within-person growth
model become interesting in their own right, making the modeling of them as a
function of between-person covariates a vehicle for answering research ques-
tions about inter-individual differences in growth. The results of fitting the
model are:

REML Estimation Iteration History

Iteration Evaluations Objective Criterion
0 1 1134.0992383
1 1 1013.1957046 0.00000000

Convergence criteria met.
Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error ZPr>|2]

INTERCEPT UNC1,1) 7.51691915 1198.7767899 318.38096701 3.77 0.0002
UNC2,1) -1.12402041 -179.2555630 88.96341625 -2.01 0.0439
UN(2,2) 0.83021660 132.40057143  40.21069632 3.29 0.0010
Residual 1.00000000 159.47714286 26.95655716 5.92 0.0001

Model Fitting Information for Y

Description Value
Observations 140.0000
REML Log Likelihood -633.411
Akaike's Information Criterion -637.411
Schwarz's Bayesian Criterion -643.266
-2 REML Log Likelihood 1266.823
Null Model LRT Chi-Square 120.9035
Null Model LRT DF 3.0000
Null Model LRT P-Value 0.0000

Solution for Fixed Effects

Parameter Estimate Std Error DDF T Pr > |T)
INTERCEPT 164.37428571 6.11884861 34 26.86 0.0001
TIME 26.96000000 2.16660366 106 12.44 0.0001

Interpreting the output from an unconditional individual growth model. No-
tice that PROC MIXED converged in just two iterations, the minimum amount
of time necessary for convergence to be evaluated. This rapid convergence
results from the perfectly balanced data set. In other analyses, especially those
with missing data, unbalanced data, or high degrees of collinearity, convergence
is unlikely to be so rapid.

Focus first on the estimates of the fixed effects. Because this is an individual
growth model with no level-2 covariates, they can be interpreted in the usual
way: By, = 164.37 is our estimate of the average intercept across persons (the
average value of Y when TIME=0) and B,,=26.96 is our estimate of the
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average slope across persons. Hence, the average person began with a score of
164 and gained 27 points per testing occasion. Standard errors and tests can also
be interpreted in the usual ways. We reject the null hypotheses that either of
these parameters are O in the population.

Focus next on the random effects. We may write the estimates for the first
three variance-covariance components in matrix form as:

Too Tor \ [ 1198.78 —179.26
.. )T\ 17926 13240
Tio T

and we also conclude that the estimated value of o is 159.48. In addition to
these estimates, SAS also produces standard errors for these estimates, and
hypothesis tests of the null hypotheses that these population variances (and
covariances) are 0. Here, you can see that all the tests reject, including those for
the terms we are most interested in: for 7, and for 7,,, which tell us that there is
variation in both the intercepts and slopes that potentially could be explained by
a level 2 (person-level) covariate.

The output presents several goodness of fit statistics that can be used to
evaluate this model, and to compare the goodness of fit for this model with that
of other (nested) models. In addition to indicating the number of observations,
we are presented with the actual REML log-likelihood, and —2RLL. Please
consult the SAS manual for details on these statistics.

A Linear Growth Model With a Person-Level Covariate

Having fit an unconditional growth model, we may now consider a model in
which we explore whether variation in intercepts and slopes is related to a
covariate. Begin by considering the model:

Y, =y +m; (TIME),; + 1,
and

where r;; ~ N(0,0?)

Ty = + COVAR; + u,;, Up; 0 Ton T

= b+ phcovar, + i, where (1)~ [ (5). (0 )]
Were we to fit this model, the interpretation of the fixed effects for B, and 8,
would be based upon conceiving of a case in which the value of COVAR was 0.
As this covariate never even approaches 0, this parameterization of the level-2
model is not the most useful. So instead, we center the covariate at its grand
mean, and consider the model:

Yy =mo;+ w0, (TIME); + 1y, where r;~ N(0,0%)
and (10a)
™o = Boo + Boi(COVAR; — COYAR) T4 Ghere (;:W) NN[(g) , (:OO :Ol)]
;= Bio + B1|(COVAR; — COVAR) + uy, v oo
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Now, the interpretation of these fixed effects is far more straightforward. B,
represents the average intercept in the individual growth model and 3,, repre-

sents the average slope.

Substituting the level-2 models into the level-1 model yields the combined
representation that most closely resembles the statements needed to use PROC

MIXED:

Y;i=Boo + Bio(TIME);; + By, (COVAR; — COVAR) +
B,,(COVAR, — COVAR)TIME), + uo; + u, (TIME),, + ,

(10b)

Letting CCOVAR represent the centered covariate, we fit this model by writing:

proc mixed noclprint covtest;
class id;

model y = time ccovar time*ccovar/s ddfm=bw notest;

random intercept time /type=un sub=id gcorr;

Notice the similarity between this syntax and the school effects model. Notice,
too, that we have added the option GCORR to the RANDOM statement, which
tells SAS to print the estimated correlation matrix amongst the random effects

(see below). Fitting this model we find:

G Correlation Matrix

Parameter Subject Row coL1 coL2
INTERCEPT 1D 1 1 1.00000000 -0.48945185
TIME Ip 1 2 -0.48945185 1.00000000
Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error ILPr>|7|
INTERCEPT UNC1,1) 7.75291483 1236.4127057 332.40217831 3.72 0.0002
UN(2,1) -1.11760998 -178.2332472 85.42977775 -2.09 0.0370
UN(2,2) 0.67250510 107.24919114 34.67670438 3.09 0.0020
Residual 1.00000000 159.47714286 26.95655716 5.92 0.0001
Model Fitting Information for Y
Description Value
Observations 140.0000
REML Log Likelihood -630.142
Akaike's Information Criterion -634.142
Schwarz's Bayesian Criterion -639.968
-2 REML Log Likelihood 1260.285
Null Model LRT Chi-Square 120.7249
Null Model LRT DF 3.0000
Null Model LRT P-Value 0.0000
Solution for Fixed Effects
Parameter Estimate Std Error DDF T PR > |T|
INTERCEPT 164.37428571 6.20609540 33 26.49 0.0001
TIME 26.96000002 1.99388078 103 13.52 0.0001
CCOVAR -0.11355272 0.50401189 33 -0.23 0.8231
TIME*CCOVAR 0.43285774 0.16192784 103 2.67 0.0087
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Interpreting the output from a linear growth models with a person-level
covariate. First examine the fixed effects. Because we grand mean centered our
level-2 covariate, the estimates for the INTERCEPT and for TIME (i.e., for By
and (3,,) are identical to what they were in the unconditional model estimated in
the previous section and the interpretation is similar as well. The only difference
now is that we add the phrase “controlling for the covariate” to the interpreta-
tion.

The coefficients for the centered covariate and its interaction with time are
new. The coefficient for CCOVAR (—0.11) captures the relationship between the
covariate and initial status. As the standard error is over four times larger than
the estimate itself, we conclude that there is no relationship between initial
status and the covariate. With respect to the growth rates, however, we do find
an effect of the covariate. The parameter estimate of .43 indicates that individu-
als who differ by 1.0 with respect to the covariate have growth rates that differ
by 0.43.

The estimate for o has remained unchanged at 159.47. But the estimates for
the variance-covariance matrix for the slopes have changed to:

(T‘oo 'F01> ~ ( 1236.41 —178.23)

A a ~\ —178.23 107.25

Tio T 78

Comparing these estimates to those from the unconditional model (in the previ-
ous section), we see that when it comes to estimating initial status, inclusion of
the covariate did not help at all (it did not reduce the size of the variance
component for intercepts). Indeed, the variance component actually increased
slightly! But inclusion of the covariate did improve the fit of the growth rates.
The variance component for growth rates went from 132.40 to 107.25. Comput-

ing (132.40—107.25)/132.40=0.19, we find a 19% reduction. In other words, the
covariate accounts for 19% of the explainable variation in growth rates.

Exploring the Structure of Variance Covariance Matrix Within Persons

The classic growth models fit in the previous two sections place a common,
but sometimes unrealistic, assumption on the behavior of the Tip the within-
person residuals over time. Were we to fit a model in which only the intercepts
vary across persons, we would be assuming a compound symmetric error
covariance matrix for each person. When we fit a model in which the slopes
vary as well, we introduce heteroscedasticity into this error covariance matrix
(which can be seen through the inclusion of the effect of TIME in the random
portion of the model in equation 9b).

How realistic are such assumptions? One of the strengths of PROC MIXED is
that it allows the user to compare different structures for the error covariance
matrix. Instead of the intercepts and slopes as outcomes model in (9a), consider
the following simpler model for observations over time:
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Y;j=m + ™ ATIME);; + r;, where r;;~ N(0,Z)
To; = Boos (11a)
™= Bio-

In this model, the intercepts and growth rates are assumed to be constant across
people. But the model introduces a different type of complexity: the residual
observations within persons (after controlling for the linear effect of TIME) are
correlated through the within-person error variance-covariance matrix Z. By
considering alternative structures for £ (that ideally derive from theory), and by
comparing the goodness of fit of resulting models, the user can determine what
type of structure is most appropriate for the data at hand.

Many different types of error-covariance structures are possible. If there are
only three waves of data, it is worth exploring only a few of these possibilities
because there is so little data for each person. With additional observations per
person (in this example we have four), additional structures for the = matrix
(called the R matrix in the language of PROC MIXED) are possible. The
interested reader is referred to the SAS System for Mixed Models (Littell et al.,
1996; pp. 92-102), the PROC MIXED documentation in Getting Started with
PROC MIXED (Latour et al.,, 1994; pp. 57-58) and the helpful paper by
Wolfinger (1996) devoted entirely to this topic.

The structure of the within-person error covariance matrix is specified using a
REPEATED statement. To fit the model in (11a) under the assumption that £ is
compound symmetric we write:

proc mixed noclprint covtest noitprint;
class id wave;

model y = time/s notest;

repeated wave/type=cs subject=id r;

Notice that I have added a second CLASS variable (WAVE) to indicate the time
structured nature of the data within person and I have used WAVE on the
REPEATED statement. WAVE differs from TIME in that WAVE is treated as a
series of dummies, whereas TIME is treated as a continuous variable to yield the
growth model. The variable specified on the REPEATED statement must be
categorical (although it need not be equal interval). The TYPE=option is crucial,
for it specifies the form of the within-person variance-covariance matrix. In
addition to the compound symmetry specification (CS) shown here, other possi-
bilities include UN (for unstructured) and AR(1) for autoregressive with a lag of
one. The SUBJECT=ID tells SAS that there are to be separate blocks of this
matrix, one for each subject. The R option asks SAS to print the R matrix.

Here is the output from the procedure run with a compound symmetry
assumption:

Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error 7 Pr > |Z]
DIAG CS 2.40703008 904.80538381 242.59019002 3.73 0.0002
Residual 1.00000000 375.90115385 52.12811095 7.21 0.0001
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Model Fitting Information for Y

Description Value
Observations 140.0000
REML Log Likelihood -650.170
Akaike's Information Criterion -652.170
Schwarz's Bayesian Criterion -655.097
-2 REML Log Likelihood 1300.340
Null Model LRT Chi-Square 87.3867
Null Model LRT DF 1.0000
Null Model LRT P-Value 0.0000

Solution for Fixed Effects

Parameter Estimate Std Error DDF T Pr> |T]|
INTERCEPT 164.37428571 5.77664310 34 28.45 0.0001
TIME 26.96000000 1.46560793 104 18.40 0.0001

The SAS System for Mixed Models presents a nice discussion of how to compare
error structures (Littell et al.,, 1994; pp. 92-102). The idea is to compare
goodness of fit statistics for different error structures, determining which one
seems to fit best. As a point of comparison, consider selected results presented
below obtained when two additional error structures were posited: Autoregres-
sive (1) and totally unstructured.

Assumption N parameters AIC SBC —2RLL
Compound Symmetry 2 —652.17 —655.10 1300.34
AR (1) 2 —636.73 —641.66 1273.47
Unstructured 10 —641.71 —656.35 1263.42

Recall that we prefer models in which the AIC and SBC are larger and the
—2RLL is smaller. Although the totally unstructured X yields the best value of
—2RLL, it does so at the price of many parameters. The estimated variance
covariance matrix from this model is:

‘ﬁl Gy O3 Oy 1308 977 921 564
Gy Oy Gp3 Oy _ 977 1120 1018 856
Gy Gy 0% Gy 921 1018 1289 1081

Gy Gy Gp G2 564 856 1081 1415
Notice the structure of this matrix—the variances along the diagonal are fairly
similar, and the off diagonal elements decrease as they represent covariances
between errors further spaced in time. This type of structure is exactly that
specified by the lagged autoregressive structure, which is why it is not surprising
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that the AR(1) model yields values of AIC and SBC that appear superior. With
only two parameters, this approach estimates 2 to be:
1324
1092
901
743

743
901
1092
1324

1092
1324
1092

901

901
1092
1324
1092

which is quite similar to the unstructured estimate, but this requires only two
parameters, o and p. Based on these analyses, we would conclude that the
AR(1) structure provides a better fit to the data. Were this an actual analysis,
however, we would also consider alternative structures before stopping at this
conclusion.

Having established the method for specifying the structure of the within-
person error covariance matrix, we may now consider what happens when we
combine this specification with the intercepts and slopes as outcomes specifica-
tion considered earlier. We allow the intercepts and slopes to vary across people
by writing:

proc mixed noclprint covtest noitprint;

class id wave;

model y = time ccovar time*ccovar/s ddfm=bw notest;

random intercept time /type=un sub=id g;

repeated wave/type=ar(l) subject=id r;

which yields the following output:
R Matrix for ID 1

Row coL1 coLe coL3 COL4
1 141.36668313 -19.36313770 2.65218857 -0.36327295
2 -19.36313770 141.36668313 -19.36313770 2.65218857
3 2.65218857 -19.36313770 141.36668313 -19.36313770
4 -0.36327295 2.65218857 -19.36313770 141.36668313
G Matrix
Parameter Subject Row coL1 coL2
INTERCEPT Ip 1 1 1258.0957499 -182.4126739
TIME 1D 1 2 -182.4126739 110.94230682
Covariance Parameter Estimates (REML)
Cov Parm Ratio Estimate Std Error ZPr>|2]
INTERCEPT UN(1,1) 8.89952089 1258.0957499 333.24588494 3.78 0.0002
UN(2,1) -1.29035123 -182.4126739 84.55201948 -2.16 0.0310
UN(2,2) 0.78478397 110.94230682 34.52985960 3.21 0.0013
WAVE AR(1) -0.00096891 -0.13697101 0.25888610 -0.53 0.5968
Residual 1.00000000 141.36668313 36.34493926 3.89 0.0001
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Model Fitting Information for Y

Description Value
Observations 140.0000
REML Log Likelihood -630.022
Akaike's Information Criterion -635.022
Schwarz's Bayesian Criterion -642.304
-2 REML Log Likelihood 1260.045
Null Model LRT Chi-Square 120.9650
Null Model LRT DF 4.0000
Null Model LRT P-Value 0.0000

Solution for Fixed Effects

Parameter Estimate Std Error DDF T Pr > |T|
INTERCEPT 164.42273345 6.19898567 33 26.52 0.0001
TIME 26.90816754 1.97745500 103 13.61 0.0001
CCOVAR -0.12338407 0.50343450 33 -0.25 0.8079
TIME*CCOVAR 0.43573062 0.16059386 103 2.71 0.0078

When interpreting this output, it is useful to compare it to the simpler models,
which included random effects for the intercepts and slopes, but which imposed
no additional structure on the error covariance matrix (beyond the heteroscedas-
tic structure of the intercepts and slopes as outcomes model). When we make
these comparisons, all signs point towards the conclusion that we do not need to
add the extra complexity of the autoregressive error structure, once the covariate
has been taken into account. I emphasize this last phrase because the error
covariance structure within persons describes the behavior of the errors—in
other words, what remains after removing the other fixed and random effects in
the model. In this instance, and in many others, the autoregressive structure is no
longer needed after other fixed and random effects are taken into account.

What evidence am I using to reach this conclusion? First, consider the
covariance estimate for the autoregressive parameter. We are unable to reject the
null hypothesis that this estimate, —0.13, could have been obtained from a
population in which the true value of the parameter were 0. In other words, there
is little supporting evidence to increase the complexity of £ by adding off-
diagonal elements. Second, when comparing the two models that include the
covariate and its interaction with time, differing only in the inclusion of the
autoregressive parameter, the —2RLL statistic improves only trivially, from
—630.14 without this assumption to —630.02 with this assumption. This im-
provement is so small that the AIC and SBC, which both penalize for the
additional parameter, actually get worse. Therefore, despite the fact that there
appears to be an autoregressive error structure when the covariate is not included
and the slopes are not treated as random, the need for this additional structure
disappears when these features are added to the model.

As this example shows, a range of models can be fit to the same data.
Experienced data analysts know that selecting among competing models can be
tricky, especially when the number of observations per person is relatively small.
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Were we conducting this analysis to reach substantive conclusions about the
relationship between the outcome and predictors, we would fit several additional
models to these data, including one with an AR(1) error covariance matrix and
random intercepts. Readers interested in learning more about specifying the
error covariance matrix and comparing results across models should consult Van
Leeuwen (1997), Goldstein, Healy, and Rasbash (1994), and Wolfinger (1993,
1996).

Conclusion

Statistical software does not a statistician make. That said, without software,
few statisticians and even fewer empirical researchers would fit the kinds of
sophisticated statistical models being promulgated today. The availability of
flexible integrated software for fitting multilevel models holds the possibility
that larger numbers of users will be able to fit reasonable statistical models to
their data. Of course, as software becomes easier to use, we face the danger that
statistical programming will substitute for clear statistical thinking and model
development. Readers of the 1995 special issue of the Journal of Educational
and Behavioral Statistics entitled Hierarchical Linear Models: Problems and
Prospects (Kreft, 1995) were reminded that no piece of software will resolve the
challenging statistical issues underlying decisions about model specification
with complex data structures. Yet readers of this special issue were also re-
minded that without software, few users would fit the models we would like to
see applied in education and the behavioral sciences.

The ideas presented in this paper can be easily extended to three-level (and
higher-level models). In the case of “school-effects” analyses, the user must
specify multiple RANDOM statements, with appropriate nesting specifications
given in the SUB= option. For example, if you have data on students within
teachers within schools, you could fit an unconditional means model with the
syntax:

proc mixed noclprint covtest;

class teacher school;

model mathach = /solution:

random intercept/sub=school;

random intercept/sub=teacher (school);

Note that we do not have to include the option/TYPE=UN on either of the
RANDOM statements because each specifies only one random effect (for the
intercept). Were we to include additional random effects on either statement
(that is, if we were to move beyond an unconditional means model) we would
need to add this option to the appropriate line.

In the case of longitudinal analyses that track individuals who are nested
within groups, the specifications in the school-effects analysis portion of this
paper can be combined with the specification in the individual growth models
section. For exemple, if you have longitudinal data on students nested within
teachers, you can fit a three-level individual growth model with the syntax:

350



Using SAS PROC MIXED to Fit Multilevel Models

proc mixed noclprint covtest;

class student teacher;

model mathach = time/solution ddfm=bw;

random intercept time/type=un sub=teacher;

random intercept time/type=un sub=student (teacher);

Note that we have now specified the option /TYPE=UN on both random
statements to ensure that estimation of the variance-covariance matrix is totally
unconstrained.

Many other options are available to the user interested in fitting more com-
plex mixed models. Heterogeneity in the error variance-covariance matrix can
be introduced using the GROUP option on the RANDOM statement. Sampling-
based Bayesian analysis can be conducted using a PRIOR statement that permits
a variety of distributional specifications for the variance components parameters’
prior density. SAS also provides two macros—GLMMIX and NLINMIX—that
can be used for fitting generalized linear mixed models and nonlinear mixed
models that do not involve the normal continuous outcomes treated here. Further
details concerning all these extensions are found in Littell et al. (1996) and SAS
Institute (1996).

PROC MIXED does not substitute for the excellent stand-alone multilevel
software programs that are constantly being updated to fit an ever increasing
array of models. Its integration into SAS, one of the most widely used integrated
statistical packages, is what makes it an attractive option for many users.
Because it was not designed with multilevel models in mind, the user seeking to
use the program is likely best served by writing out the particular model to be fit
and then identifying the appropriate syntax. Experience suggests that proceeding
directly to PROC MIXED syntax is likely to produce output that is not what the
user intended. But with these caveats in mind, I believe that PROC MIXED
represents a valuable addition to the statistical toolkit for fitting multilevel
models, hierarchical models, and individual growth models.

Notes

' The validity of these tests has been called into question both because they rely on
large sample approximations (not useful with the small sample sizes often analyzed using
multilevel models) and because variance components are known to have skewed (and
bounded) sampling distributions that render normal approximations such as these ques-
tionable. Although many other multilevel programs use the same approach to testing
variance components (e.g., MLwiN and MIXREG), SAS has responded to this caution by
actually dropping this section of output from the default PROC MIXED specification (in
versions 6.12 and higher). That is why we needed to specify the option COVTEST on the
PROC MIXED statement. An alternative approach is to compare models using familiar
likelihood ratio chi-square tests that compare full and reduced models. Further details on
this straightforward alternative are given in SAS Institute (1996) pages 598-599.

? There is another way of thinking about these variance components that you should be
thinking about whenever you fit an unconditional model. The variance component for
schools, here 8.6096, places an effective ceiling on the amount of variation in school
means that will ever be explainable by a school level (level-2) factor. By including school
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level factors (as we will do in the next section), we hope to reduce the size of this
variance component, indicating that we have explained part of the explainable variation.

3If you want to compare models with different fixed effects you must specify
METHOD=ML and use the IC option. This is because SAS uses Restricted Maximum
Likelihood (REML) (also known as residual maximum likelihood) as the default method
of estimation. For further discussion of the differences between these methods of estima-
tion, and the consequences of these differences, consult Longford (1993) or Diggle, Liang
and Zeger (1994).

* For further information about the accuracy of these tests, see Littell et al., 1996, p. 4.

Appendix: Creating SAS data sets for use in PROC MIXED

SAS data sets containing multilevel data can be organized in one of two ways:
(a) multiple record data sets, in which each level-2 unit has multiple records,
one per level-1 unit; and (b) multiple variable data sets, in which each level-2
unit has one record and multiple variables are used to record either the multiple
occasions of measurement or the multiple members of a group (the level-1 data).
In a multiple record file, the data set for 35 people with 4 occasions of
measurement would have 140 records, one per person, per occasion. In a
multiple variable file, the same data set would have only 35 records; 4 variables
would be used to denote the individual’s score on each measurement occasion.

To use PROC MIXED, you need a multiple record data set. It must contain all
the variables you want to analyze (regardless of the level at which they are
measured) at the lowest level possible. In this appendix, I describe how you can
create this data set from a variety of existing data arrangements. The example
uses the data for indivdual growth modeling analyzed in the text (Willett, 1988).
By selecting from the code presented, you should be able to create whatever
variables needed for multilevel analysis.

Reading in Multiple Record Files

Most data you will encounter will arrive as a multiple record file. You will
have data on multiple teachers within a school, multiple students in a class,
multiple children within a family, or multiple observations on individuals over
time. Each observation must have an ID that identifies the group (or other
level-2 unit) to whom each level-1 record belongs. An example of the level-1
data file for the growth modeling example is shown below. There are four
variables: the ID in cols 1-2, the TIME of measurement in col 3, the SCORE in

cols 4-6, and the COVAR in cols 7-9.

010205 37
011217 37
012268 37
013302 37
020219 23
021243 23
022279 23
023302 23
350166 10
351197 10
352203 10
353233 10
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The code below provides two ways of reading this multiple record file. Data step
one reads it in as a multiple record file; data step two reads it in as a multiple
variable file. Although it is most common to read the data in as a multiple record
file, it is sometimes convenient to have the data organized as multiple variable
file (especially when thinking about creating aggregate variables or computing
means for centering). If you decide that this is the case for you, the second data
step could be used as well, providing you with a level-2 data file. PROC
SUMMARY can also be used in this regard.

Converting From Multiple Record Files to Multiple Variable Files
(and vice versa)

Once you have created either type of SAS data set, it is relatively easy to
convert from one data structure to the other. Data step three converts a multiple
record SAS data set (data=one) into a multiple variable data set. The resultant
data set is identical to the data set created in data step two. Note that I have
changed the names of the array variables from T and SCORE to TVAR and
SCOREVAR because the arrays T and SCORE had already been defined in a
previous data step.

Data step four converts a multiple variable data set into a multiple record data
set. This data step completes the cycle, enabling you to go from one form to
another with ease. The resultant data set (data=four) is identical to data set one.
The important idea for PROC MIXED users is that you can easily go from one
data form to the other through the careful use of data steps.

Code for manipulating multilevel data sets
*Reading in as a multiple record file*;

data one;
infile test;
input id 1-2 t 3 score 4-6 covar 7-9;

*Reading in as multiple variable file. *;

data two:

infile test eof=stop;

array t[4] tl-t4;

array score [4] scorel-score4;

do i=1 to 4 while (id=nextid);
input id 1-2 t[i] 3 score [i] 4-6 covar 7-9;
input nextid 1-2 @@;

end;

drop nextid i;

stop: output;
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*Converting a multiple record SAS data set into a multiple variable SAS
data set. *;

data three;

array tvar(4] tl-t4;

array scorevar [4] scorel-scored;
do i=1 to 4 until (last.id);

set one;

by id;

tvar [i]=t;
scorevar [i]=score;
end;

drop i t score;
*Converting a multiple variable data set into a multiple record data set. *;

data four;
set three;
array tvar [4] tl-t4;
array scorevar [4] scorel-scored;
do i=1 to 4;
t = tvar([i];
score = scorevar [i];
output;
end;
drop i tl-t4 scorel-scored;
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