October 1, 2006
BECOMING WinBUGS ENABLED

· All WinBUGS file references are to sub-directory of the WinBUGS14
· (or whatever version you are using) directory.
· To modify examples and/or run them, select the code/date/inits and paste into a new .odc file.

1. Start by doing the tutorial in Manuals\Tutorial (this may not be available in early versions of WinBUGS.
2. Then, begin perusing the Examples Vol I and Examples Vol II available by clicking on “Help.”
3. Ultimately, go through the “tricks” in Manuals\Tricks.
4. All Examples (Vols I and II) are informative and the order presented is as good as any. However, peruse them in any order that suits your interests.

Issues in specifying ultimate distributions

Though we are not teaching Bayesian analyses, some cautions and hints are needed to run WinBUGS responsibly. Here are a few:

Item 1

The spread of distributions is parameterized by the precision rather than the variance. For example, the normal distribution is called by “dnorm(mean, precision)” rather than by (mean, variance). The relation is straightforward:

precision = 1/Variance,
but it’s easy to forget that we need to use precisions. The BUGS examples use notation like “tau” for the precision, but I’m used to using that for a standard deviation. Safest is to denote the precisions with acronyms that remind you, such as “precmu,” but whatever you do, be careful.
In the WinBUGS code you can monitor the variance by including a logical node such as:

varmu <- 1/precmu

and the standard deviation by:
sdmu <- 1/sqrt(precmu).
Item 2

We are running “objective Bayes” with uninformative “last stage” distributions. In theory, this means we should be using infinite variance (precision = 0) distributions, but WinBUGS doesn’t understand infinite variance or 0 precision. So, we need to run models with a large variance (small precision). Unfortunately, “large” depends on the scale of the problem and so you need to be careful. I give two examples that cover much of what we consider.

Ultimate priors for parameters that can be in (-(, () (e.g., location parameters):
Use:

dnorm(0, smallprec).
The challenge is to define “smallprec” because it depends on the units. For example, if the possible values of the parameter are likely to be near 1, then smallprec = 10-6 will be “small,” but if the possible values are near 10-6, (e.g., distances that cluster around 1mm, but are expressed in kilometers), then this value will not be “small.” Therefore, need to take the units of measurement into account and not assume that 10-6 is “small.” For example, if you are estimating the population mean, if the sample mean is around 1, then 10-6 is sufficiently small, but if the mean is 10-6, then you need to use “smallprec = 10-12 to achieve “small.”
Ultimate priors for parameters that are constrained to (0, () (e.g., precision parameters):
The typical ultimate prior is “dgamma(r, beta)” The mean of this distribution is alpha/beta and the variance is r/(beta)2. It’s best to parameterize this by: “dgamma(r, r/mean).” It’s fine to keep r = .001, but you need to respect the scale of the data (or parameter below this node) when selecting “beta = r/mean” to ensure that the distribution makes possible values possible. Select the “mean” to be in the mid-range of reasonable values of the parameter, paying attention to the scale of the measurements.
Computing “P-Values”
You can get the WinBUGS equivalent (Bayesian equivalent) of a one-sided P-value by computing an appropriate tail area. Assume you want to compute the one-tailed P-value for a parameter “slope” compared with a working hypothesis “slope0” (which of course can be 0). Proceed as follows:
· In your WinBUGS code, create the logical node: slopepvalabove <- step(slope - slope0).
· Set a summary monitor for it (don't bother setting a trace).

· At the end of the run, ask for “statistics” on it. The mean will be an estimate of
 pr(slope (slope0).

· You can then compute: slopepvalbelow = [1 - pr(slope (slope0)] = pr(slope < slope0).
· If you know you want the “<” area rather than the “(,” then code the logical node as:

 slopepvalbelow <- 1 - step(slope - slope0)

· For two-sided P-values, compute 2(min(slopepvalabove, slopepvaluebelow).
