Epigenomics: Some Statistical Applications

Rafael A. Irizarry
Department of Biostatistics John Hopkins Bloomberg School of Public Health

Acknowledgements

- Tom Albert, Nimblegen
- Benilton Carvalho, JHU Biostatistics
- Andy Feinberg Lab, JHU Medicine
- Todd Richmond, Nimblegen
- Hao Wu, JHU Biostatistics
- Jean Wu, Brown Biostat
- Vasan Yegnasubramanian, JHU Oncology

Outline

- Quick Introduction to Epigenetics
- Introduction to Methylation
- Overview of competing technologies
- Review: Expression arrays lessons
- Comparison
- Role of statisticians

Genetics: the alphabet of life

- Letters of DNA sequence carry the information

Epigenetics

$\left(3.4 \times 10^{-10}\right.$ meters $\left./ \mathrm{bp}\right) \times\left(6 \times 10^{9} \mathrm{bp} /\right.$ genome $)=\sim 2$ meters/genome
Radius of the nucleus is $\sim 10 \mu \mathrm{M}$!!!

[(6 x 10^{9} bp/genome) / (195 bp/nucleosome)] = 30.8×10^{6} nucleosomes/genome
~ 5% of nuclear volume

Nucleosome, Solenoid Model of Chromatin and Chromosome

http://www.albany.edu/~achm110/solenoidchriomatin.html

Epigenetics: the grammar of life

DNA methylation

Not recognized by
malntenence methylese

Obsered to expeced $=\operatorname{Pr}(\mathbf{C G}) /\{\operatorname{Pr}(\mathbf{C}) \operatorname{Pr}(\mathbf{G})\}$

DNA methylation can lead to silencing of gene expression

Robertson and Wolffe, Nat Rev Genet, 2000

ENCODE Track

Expression Array Lessons

Normalization

Probe effect

Intensity $=$ Background + Probe Effect \mathbf{x} Quantity x ErroI

Sequence effect for BG

Wu et al. (2004) JASA 99(468) 909

Affinity $=\sum_{k=1}^{25} \sum_{j \in\{A, T, G, C\}} \mu_{j, k} 1_{b_{k}=j} \begin{aligned} & \text { Position } \\ & \begin{array}{l}\mu_{j, k} \\ \text { of } k\end{array}\end{aligned} \sim$ smooth function

Back to Methylation

High throughput of course....

Densities for three methods

HCT116 lots of methylation DKO very little methylation

Hunh?

MeDIP (like ChIPchip)

Some Data

Problem: Not specific

HELP: Two enzymes
 Cuts at CCGG
 Cuts at CMCGG

No Methylation

HELP after PCR

No Methylation

HELP

Methylation

HELP

No Methylation

Problem with HELP

Cuts at CCGG

Cuts at CMCGG

No Methylation

The Problem

Obsered to expeced $=\operatorname{Pr}(\mathrm{CG}) /\{\operatorname{Pr}(\mathrm{C}) \operatorname{Pr}(\mathrm{G})\}$

Proportion of neighboring CpG also methylated/not methylated

McRBC on Tiling array

ROC now

ENCODE Track

Problems for Statisticians

- Background Correction + Normalization
- Probability Model for Segments
- Use these to from null and alternative models... we need power!
- Use these to create bump finding algorithms
- Adapt to high-throughput sequencing

Supplemental Slides

McRBC: One enzyme

Cuts at AmCG or GmCG
Input

No Methylation

McRBC after Gel

No Methylation

McRBC after Gel

No Methylation

McRBC

Methylation

McRBC after GEL

Methylation

McRBC after GEL

Methylation

