Estimation problems in high throughput SNP platforms

Rob Scharpf

Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health

November 24, 2008
Outline

1. Introduction
 - What is a SNP?
 - What is copy number?
2. Platforms
 - Affymetrix
 - Illumina
3. The data
4. Preprocessing
5. Three estimation problems
 - Tier 1: By locus
 - Tier 2: By sample (multiple loci)
 - Tier 3: Across samples
6. Conclusions
Single nucleotide polymorphisms

- occur every 100 to 1000 bp
- minor allele frequency ≥ 1%

What is a SNP?
What is copy number?
Copy number

- Autosomal copy number: 2
- Chromosome X: women have 2 copies / men have 1 copy
- copy number alterations:
 - homozygous deletion (0 copies)
 - hemizygous deletions (1 copy)
 - amplification (3 or more copies)
- copy number-neutral alterations: loss of heterozygosity (LOH)
- copy number variants can be rare or common (polymorphisms)
Copy Number Variation (CNV)

Copy number variants are segments of DNA typically > 1000 basepairs with altered copy number (e.g., hemizygous deletion, amplification)

Frequency:
- Thousands of genes are variable in copy number
- The more than 6000 CNVs currently in the Toronto Database of Genomic Variants is likely an underestimate

Biology:
- CNVs have been implicated in diseases such as autism, cancer, and diabetes
- Statistical methods to assess the contribution of CNVs to disease susceptibility are under development
Mechanism of copy number alterations

- See recent review by Gu et al. (2008), PathoGenetics
Affymetrix

Introduction
Platforms
The data
Preprocessing
Three estimation problems
Conclusions

Affymetrix
Illumina

1.28 cm
1.28 cm
Actual size of GeneChip® array

6.5 million locations on each GeneChip® array

 Millions of DNA strands built up in each location

Actual strand = 25 base pairs

R. Scharpf

SNPs and copy number
• Gunderson *et al.* (2005), Nature Genetics
• References: Matt Richie (see recent Expressionists talk for overview)
• R Packages: beadarray, beadarraySNP
Affymetrix data (after some processing)
Polymorphic and nonpolymorphic probes

chromosome 1

CNVs: 945826
SNPs: 906600

10MB window
CNVs: 2494
SNPs: 2630

R. Scharpf
SNPs and copy number
Uncertainty of point estimates

- Most genotyping algorithms are accurate and concordant for over 99.9% of diallelic SNPs. However, there is uncertainty in the genotype estimates that differs by SNP.

Graph showing data points with labels 'sense' and 'antisense'.
Multiple levels of variation

- the entire chromosome (e.g. trisomy 21)
- segmental changes such as insertions, deletions, inversions, and translocations
- small genomic regions including SNPs
Ideally, preprocessing method should provide normalized intensities that are robust to differences in labs and batch (this may not always be true).

SNP-RMA (oligo package at Bioconductor) quantile normalizes the raw fluorescence intensities to a Hapmap reference distribution.

The normalized intensities can then be fed into algorithms for genotype calling (e.g., CRLMM) or copy number.
Three tiers of estimation problems for germline diseases

- **By locus**: How can we use the low-level data to optimally estimate the genotype and DNA copy number for each locus in the array?

- **By sample**: How can we borrow strength between neighbouring loci, and infer regions of loss of heterozygosity (LOH) and CNV in the genome of the subject studied?

- **Between samples**: How can we compare the genotypes and copy numbers of many subjects, infer common regions of alterations, and assess differences between affected subjects and normal controls?
Tier 1: By locus

How can we use the low-level data to optimally estimate the genotype and DNA copy number for each locus in the array?
Available software for genotype calling

Affymetrix:
- Affymetrix Power Tools (APT)
 Affymetrix Inc. (2006), White Paper
 http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
- BRLMM (now the default used by APT)
 Rabbee and Speed (2006), Bioinformatics
- R package oligo – CRLMM
 Carvalho *et al.* (2007), Biostatistics

Illumina:
- BeadStudio
- ...
Available software for copy number

Affymetrix:
- Affymetrix Power Tools (APT)
- R package aroma-affymetrix
 H. Bengtsson *et al.* (2008), Bioinformatics
- Others: Golden Helix (for more info, attend a webinar. Also supports Illumina)
- ITALICS (an iterative method for normalization. Available for 6.0?)
 G. Rigaill *et al.* (2008), Bioinformatics
- PLASQ (allele-specific copy number estimation)
 T. LaFramboise *et al.* (2007), Biostatistics
- dCHIP

Illumina:
- BeadStudio (log R ratios)
- Golden Helix
- R package: beadarraySNP
- ...

Some copy number tools are not listed here because they smooth across SNPs (e.g., ITALICS, CBS, GLAD, VanillaICE, PennCNV). More about these in Tier 2.
Basic approach to locus-specific estimation of copy number

Statistical model:

\[\text{Observed} = \text{Background} + \text{Nonspecific} + \text{Specific} \]
Algorithm

1. Derive locus-specific estimates of these parameters from a large training set where individuals are assumed to have two copies at each locus.

2. Using locus-specific parameters estimated from training data, estimate the copy number and provide quantifications of the uncertainty in a new dataset.

- Improve locus estimates by modeling the spatial dependence across SNPs – Tier 2.
Low uncertainty

Observed intensities for the B (y-axis) and A (x-axis) alleles for a single SNP
Tier 1: By locus
Tier 2: By sample (multiple loci)
Tier 3: Across samples

High uncertainty
Important points

- Probes differ in their ability to quantify copy number
- Important to propagate uncertainty estimates to downstream analyses
- Important to investigate differences between batches and labs
Tier 2: By sample

- How can we *borrow strength* between loci to infer regions of loss of heterozygosity (LOH) and CNV in the genome of the subject studied?

- The choice of statistical methodology for smoothing/segmenting locus-specific estimates of copy number may depend on disease etiology
 - nonparametric segmentation approaches are particularly useful for cancer samples when the copy number may be noninteger (attributable, for instance, to an impure biopsy of the tumor)
 - for germline diseases in which all cells are believed to have the same DNA, hidden Markov models have the advantage of making joint inference from the genotype calls and copy number estimates, inferring both copy number neutral (LOH) and nonneutral alterations (deletions, amplifications)
Considerations

- Motivation: Copy number and genotype estimates are correlated in high density SNP platforms due to underlying haplotype structure and linkage disequilibrium.

- Probes differ in their ability to quantify copy number.
 - When borrowing strength across loci, we should weight by the inverse of the variances of the locus-level estimates.

- When trios of parents and proband are available, we can distinguish between de-novo and inherited events and use Mendelian rules of inheritance to improve the precision of breakpoints.
Available Software (incomplete)

Affymetrix:
- APT uses a hidden Markov model
- R package VanillaICE
- R package DNAcopy
 Circular Binary Segmentation described in Olshen et al. (2004) Biostatistics

Illumina:
- QuantiSNP
 S. Colella et al. (2007), Nucleic Acids Research
- PennCNV
 K. Wang et al. (2008), Nucleic Acids Research
- ...
Simulated data for chromosome 1 of one sample
Hidden Markov Models (HMM)

- Emission probabilities (vertical arrows): the probability of what we observe given the underlying hidden state
- Transition probabilities (horizontal arrows): the hidden state (in boxes) at a SNP is dependent on the true state of the previous SNP due to haplotype structure and linkage disequilibrium
HMM Predictions

Tier 1: By locus
Tier 2: By sample (multiple loci)
Tier 3: Across samples

SNPs and copy number
Low uncertainty

High confidence score for CN estimate

Tier 1: By locus
Tier 2: By sample (multiple loci)
Tier 3: Across samples

Tier 1: By locus
Tier 2: By sample (multiple loci)
Tier 3: Across samples
A HMM for Trios

Idea: model the copy number and genotype estimates for the trio jointly to directly infer *de-novo* versus inherited regions of structural variation.
Important points

Germline diseases

- Integer copy numbers (0, 1, 2, 3, ...)
- Stochastic process well captured by HMM
- Analysis: Tier 1 \rightarrow Tier 2 \rightarrow Tier3

Somatic cell diseases

- Noninteger copy numbers (e.g., mosaicism)
- Stochastic process imposed by HMM not always appropriate
- Nonparametric techniques may be preferable
- Analysis: Tier 1 \rightarrow Tier 3?
Tier 3: Between samples
How can we compare the genotypes and copy numbers of many subjects, infer common regions of alterations, and assess differences between affected subjects and normal controls?

Considerations:

- Breakpoints of variants identified by HMM will differ across subjects
- For common variants, we can calculate sliding test statistics
- For diseases believed to be caused by multiple rare variants, inference for de-novo versus inherited variants will be important
Software

- R package CNVtools
 http://cnv-tools.sourceforge.net/CNVtools.html
 Barnes et al. (2008), Nature Genetics

- Plink http://pngu.mgh.harvard.edu/~purcell/plink/
 Purcell et al. (2007), American Journal of Human Genetics
Loss of heterozygosity (LOH) in many subjects

Top: LOH regions identified by fitting a hidden Markov model.
Bottom: frequency of LOH regions.
Plotted in blue are the -log10 p-values (y-axis) from a Fisher’s exact test in a simulated dataset of 1000 cases and 1000 controls at each of 1000 loci (x-axis). A common variant that was in 10% of the cases and 1% of the controls was inserted at 161 Mb.
Copy number for 450 controls and 450 cases were simulated. Left: 6 representative cases with 3 different types of deletions. Segmentation methods would smooth over the deletions (average across all samples 1.95).
Genotypes and copy number estimates that are plotted in Biology journals are heavily processed.

Higher level analyses can be improved by propagating the uncertainty from lower level analyses.

Multiple tools are available for both CNV and genotyping. Ask for the rawest form of data whenever possible (CEL files for Affymetrix, raw X and raw Y intensities for Illumina).

GWAS for copy number are starting to appear in the literature.
Contributors and expertise

- Ingo Ruczinski: http://www.biostat.jhsph.edu/~iruczins
 copy number, hidden Markov models, genome-wide association methods
- Rafael Irizarry: http://rafalab.jhsph.edu
 copy number estimation, genotyping, Bioconductor developer
- Benilton Carvalho:
 http://www.biostat.jhsph.edu/people/student/carvalho.shtml
 genotyping, Bioconductor developer, R package: oligo
- Jonathan Pevsner: http://pevsnerlab.kennedykrieger.org/
 bioinformatics, SNP* web-based utilities, developmental disorders