On the Precision of Experimentally Determined Protein Folding Rates and ϕ Values

Ingo Ruczinski
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

The ϕ-value is defined as the ratio $\Delta\Delta G / \Delta\Delta G^u$.

Energy Profile

- If the part of the protein that contains the variant amino acid is fully structured in the transition state, we have $\Delta\Delta G = \Delta\Delta G^u$ and hence $\phi \approx 1$.
- If the part of the protein that contains the variant amino acid is equal in denatured and the transition state, we have $\Delta\Delta G_2 \approx 0$, and hence $\phi \approx 0$.

At least this is the idea …

Phi-Value Estimation

\[
\log(k_f) = \log \left(\exp \left(\log(k_o) + \frac{\Delta G}{RT} \right) + \exp \left(\log(k_o) + \frac{\Delta G}{RT} \right) \right)
\]

\[
\Delta\Delta G_2 = RT \times \left[\log(k_o^{\text{den}}) - \log(k_o^{\text{trans}}) \right]
\]

\[
\Delta\Delta G_3 = RT \times \left[\log(k_{f}^{\text{trans}}) - \log(k_{f}^{\text{den}}) - \log(k_o^{\text{den}}) - \log(k_o^{\text{trans}}) \right]
\]

Questions

- What is the threshold for the difference in stability ($\Delta\Delta G^u$) between two variants to assure reliable estimates of ϕ?

It depends.

Precision

I28A WILDTYPE

\[
\phi = 0.60 \\
\Delta\Delta G^u = 3 \text{ kcal/mol}
\]
Precision

10 data points / chevron

Precision

20 data points / chevron

Precision

40 data points / chevron

Precision

Questions

- What is the threshold for the difference in stability ($\Delta\Delta G$) between two variants to assure reliable estimates of ϕ?

- How can we construct valid standard errors for the estimates of ϕ?
\[
\ln(k_{\text{obs}}) = \log\left(\exp\left[\log(k_0) + m_1 \times \frac{\Delta G_1}{\Delta G_0} \right] + \exp\left[\log(k_0) + m_2 \times \frac{\Delta G_2}{\Delta G_0} \right] \right)
\]

\[
\text{Se}(\hat{\theta}) = |\theta| \times \sqrt{\frac{\sigma^2_{\Delta G_1}}{\Delta G_1} + \frac{\sigma^2_{\Delta G_2}}{\Delta G_2} - 2 \rho_{\Delta G_1 \Delta G_2} \frac{\sigma_{\Delta G_1} \sigma_{\Delta G_2}}{\Delta G_1 \Delta G_2}}
\]

Web Server
Questions

- What is the threshold for the difference in stability ($\Delta \Delta G_u$) between two variants to assure reliable estimates of ϕ?
- How can we construct valid standard errors for the estimates of ϕ?
- How reproducible are ϕ-value measurements?

Reproducibility?

Alternative Techniques

Dang...

Estimates of the speed of light, with "confidence intervals" (1895 - 1950).

Youden (Technometrics, 1972).

Questions

- What is the threshold for the difference in stability ($\Delta \Delta G_u$) between two variants to assure reliable estimates of ϕ?
- How can we construct valid standard errors for the estimates of ϕ?
- How reproducible are ϕ-value measurements?
- What are the effects of other commonly employed techniques to calculate ϕ from kinetic data?

References

Acknowledgments

- UC Santa Barbara Department of Chemistry Biochemistry
 Miguel de los Rios, Kevin Plaxco.

- University of Chicago Department of Chemistry
 Tobin Sosnick.

- Rice University Department of Biochemistry and Cell Biology
 BK Muralidhara, Pernilla Wittung-Stafshede.

- UC Berkeley Department of Molecular and Cell Biology
 David Wildes, Susan Marqusee.

http://biostat.jhsph.edu/~iruczins