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Missing Data - Approaches

• The most common approach for dealing with missing data is to omit the obser-
vations that have missing records in the model’s covariates. This approach can
have several shortcomings, including:

−→ Loss of power.

−→ Bias in the parameter estimates.

A good reference on this topic is Greenland and Finkle (1995).

• Some other used approaches are:

−→ To impute a value from the marginal distribution of the covariate.

−→ To create an extra level indicating missingness, if the covariate is a factor.

These choices tend to be not so great either.

Reference:
Greenland S, Finkle WD (1995). A Critical Look at Methods for Handling Missing Covariates in Epidemiologic Regression Analyses.
American Journal of Epidemiology, 142 (12): 1255-64.

Missing Data - Approaches

• Multiple imputation can be used to draw valid statistical inference from data
with missing values when the data are missing at random (Little and Rubin
1987, Schafer 1997).

→ In essence, multiple imputation acknowledges the uncertainty due to missing
data, instead of simply ignoring it: several complete data sets are generated,
and the uncertainty in the model parameter estimates incorporates the stan-
dard errors of the parameter estimates as well as the variability between the
parameter estimates from the replicate data sets.

→ While the hypothesis of missing at random cannot formally be tested, it is
a lot less stringent than the requirement of missing completely at random,
which is the underlying assumption made when observations are omitted.

References:

• Little RJ, Rubin DB (1987). Statistical Analysis with Missing Data. John Wiley Sons, New York.

• Schafer JL (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall.

Not Missing at Random

From the “white paper”, http://www.affymetrix.com/support/technical/product updates/brlmm algorithm.affx

Multiple Imputation
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Multiple Imputation
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Multiple Imputation
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Example 1

Number of Pairs Odds Ratio Confidence Interval

XPD Lys751Gln

original data set 202 1.90 ( 1.20 – 3.00 )

multiple imputations 321 1.45 ( 1.00 – 2.10 )

XPD Gln751Gln

original data set 202 2.18 ( 1.08 – 4.40 )

multiple imputations 321 1.31 ( 0.74 – 2.34 )

Positive Family History

original data set 202 2.53 ( 1.43 – 4.50 )

multiple imputations 321 2.53 ( 1.58 – 4.03 )

Example 1

Family History not complete Family History complete

AA AC CC na AA AC CC na

raw numbers

case 43 54 5 5 61 121 25 7

control 35 57 12 3 90 102 22 0

percentages

case 40.2 50.5 4.7 4.7 28.5 56.5 11.7 3.3

control 32.7 53.3 11.2 2.8 42.1 47.7 10.3 0.0

Reference:
Brewster AM, Jorgensen TJ, Ruczinski I, Huang HY, Hoffman S, Thuita L, Newschaffer C, Lunn RM, Bell D, Helzlsouer KJ (2006).
Polymorphisms of the DNA Repair Genes XPD (Lys751Gln) and XRCC1 (Arg399Gln and Arg194Trp): Relationship to Breast Cancer
Risk and Familial Predisposition to Breast Cancer. Breast Cancer Research and Treatment, 95(1): 73-80.
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The missing data were imputed using decision trees. In a minute . . .

Example 2
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Multiple Imputation

We looked into two approaches:

1. Haplotype-based imputation

→ The idea here is to reconstruct the haplotypes (for example via the EM al-
gorithm), and impute the missing values from the estimated haplotype fre-
quencies.

2. Tree-based imputation

→ The idea here is to use decision trees to impute the genotype data, borrow-
ing information from neighboring SNPs and other variables.

Reference:
Dai J, Ruczinski I, LeBlanc M, Kooperberg C (2006). A Comparison of Haplotype-based and Tree-based SNP Imputation in Association
Studies. Genetic Epidemiology, (in press).

Tree-based Imputation

• For each individual i, let Mi = (Mi1, Mi2, . . . , Mip) be the vector of p variables
consisting of the covariates Xi = (xi1, . . . , xir) and the unphased SNP data
Gi = (gi1, . . . , gik) which have missing entries (1 ≤ p ≤ r + k).

• Let Ci be the vector of the remaining covariates and unphased SNP data for
which all data are available. We assume that the outcome Di is always ob-
served.

• The joint probability distribution of the missing data for individual i given the
observed data, Pr(Mi1, Mi2, . . . , Mip|Ci,Di), is difficult to get. An obvious prob-
lem is that the sets of missing data Mi and complete data Ci, respectively, are
different for each individual i.

• Instead of modeling the joint distribution, we use the Gibbs sampler, a Markov
chain Monte Carlo technique that uses conditional (low-dimensional) distribu-
tions to draw samples from a high-dimensional distribution.

Tree-based Imputation

Specifically, we consider iteratively sampling from the following sequence of the full
conditional distributions in the (n + 1)th iteration:

M
(n+1)
1 ∼ Pr(M1|M (n)

2 ,M
(n)
3 , . . . , M (n)

p ,C,D)

M
(n+1)
2 ∼ Pr(M2|M (n+1)

1 ,M
(n)
3 , . . . , M (n)

p ,C,D)
...

M (n+1)
p ∼ Pr(Mp|M (n+1)

1 ,M
(n+1)
2 , . . . , M

(n+1)
p−1 ,C,D).

where each full conditional distribution is modeled by CART.

→ A convenient property of surrogate splits in CART is that we do not have to
guess the initial values of the missing data in M. As a result only a very short
burn-in of the above sampler is required.

Simulation 1
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Simulation 2

Mean imputation errors in the simulated data of four SNPs on the PGR gene for four impu-
tation approaches:

10% missing data 20% missing data

Approach SNP1 SNP2 SNP3 SNP4 SNP1 SNP2 SNP3 SNP4

β = 0

Naive 0.625 0.596 0.568 0.449 0.625 0.595 0.567 0.449

EM 0.412 0.390 0.243 0.379 0.427 0.407 0.271 0.385

WEM 0.412 0.390 0.243 0.379 0.427 0.406 0.271 0.385

Tree 0.440 0.397 0.260 0.399 0.461 0.411 0.292 0.415

β = 1

Naive 0.627 0.589 0.560 0.441 0.627 0.589 0.560 0.441

EM 0.433 0.383 0.245 0.369 0.448 0.399 0.273 0.375

WEM 0.415 0.381 0.241 0.369 0.431 0.396 0.269 0.375

Tree 0.449 0.389 0.263 0.389 0.471 0.407 0.296 0.403

β = 2

Naive 0.628 0.587 0.557 0.438 0.627 0.588 0.557 0.438

EM 0.443 0.380 0.246 0.365 0.457 0.397 0.273 0.371

WEM 0.386 0.375 0.233 0.363 0.402 0.391 0.257 0.370

Tree 0.422 0.388 0.262 0.385 0.443 0.398 0.292 0.399

Motivation

“Current methods for analyzing complex traits include analyzing and localizing dis-
ease loci one at a time. However, complex traits can be caused by the interaction
of many loci, each with varying effect.”

“. . . patterns of interactions between several loci, for example, disease phenotype
caused by locus A and locus B, or A but not B, or A and (B or C), clearly make
identification of the involved loci more difficult. While the simultaneous analysis of
every single two-way pair of markers can be feasible, it becomes overwhelmingly
computationally burdensome to analyze all 3-way, 4-way to N -way ’and’ patterns,
’or’ patterns, and combinations of loci.”

Reference:
Lucek PR, Ott J (1997). Neural network analysis of complex traits. Genetic Epidemiology, 14(6): 1101-6.



Double Penetrance Model
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(SNPaa ∧ SNPBBc) ∨ (SNPbb ∧ SNPAAc)

Logic Regression

• X1, . . . ,Xk are 0/1 (False/True) predictors.

• Y is a response variable.

• Fit a model

g(E(Y)) = b0 +

t∑

j=1

bj · L j,

where L j is a Boolean combination of the covariates, e.g. L j = (X1∨ X2)∧ Xc
4.

• Determine the logic terms L j and estimate the bj simultaneously.

• SNPs are coded as dominant and recessive:

SNP X X.R X.D

AA 0 0

AT 0 1

TT 1 1

Reference:
Ruczinski I, Kooperberg C, LeBlanc M (2003). Logic Regression. Journal of Computational and Graphical Statistics, 12(3): 475-511.

The Move Set for Logic Regression
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Simulated Annealing for Logic Regression

We try to fit the model g(E(Y)) = b0 +
∑t

j=1 bj · L j.

• Select a scoring function (RSS, log-likelihood, . . .).

• Pick the maximum number of Logic Trees.

• Pick the maximum number of leaves in a tree.

• Initialize the model with L j = 0 for all j.

• Carry out the Simulated Annealing Algorithm:

→ Propose a move.

→ Accept or reject the move, depending on the scores and the temperature.

Growing Logic Models
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Model Selection

We implemented two flavors for the required model selection. Both approaches
require a definition of model size.

• Cross-validation:
This is most applicable when prediction is the main objective, i. e. not in SNP association studies.

• Permutation tests:
This is a test for association, i. e. the preferred test in SNP association studies. The model size is chosen

via a sequence of hypothesis tests.

Reference:
Ruczinski I, Kooperberg C, LeBlanc M (2003). Logic Regression. Journal of Computational and Graphical Statistics, 12(3): 475-511.



Multiple Models 1 : Monte Carlo LR

• Goal: identify all models and combinations of covariates that are potentially
associated with the outcome.

• Use reversible jumps to implement an MCMC algorithm with priors on models
and model size.

• The prior on model size does influence the total number of SNPs selected.

• The prior on model size has virtually no influence on the relative ordering of the
SNPs or combinations thereof.

Reference:
Kooperberg C, Ruczinski I (2005). Identifying Interacting SNPs using Monte Carlo Logic Regression, Genetic Epidemiol., 28(2): 157-70.

Multiple Models 2 : Metropolis-Hastings
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Multiple Models 2 : Metropolis-Hastings

Let γS be the score of a certain state S.

• We use the acceptance function

α(γold, γnew, t) = min{1,exp([γold − γnew]/t)}

• If we keep the temperature constant, this defines a homogeneous Markov chain.

• We constructed the move set to be irreducible and aperiodic, therefore each
homogeneous Markov chain has a limiting distribution πt(S).

• If we know the model size where the signal ends and the noise starts, we can
read off the corresponding temperature from the diagnostic plot!

Multiple Models 2 : Metropolis-Hastings

Example: Simulate 10 binary predictors X 1, . . . , X 10.

Let Y = 5 + 1 × L(X 1, X 2, X 3, X 4) + ε, ε ∼ N(0,1).

Run a homogeneous Markov chain during “crunch time” for two separate cases:

Case 1 All X are independent.

Case 2 All X are independent, except X 4 (in the signal) and X 5 (not in the
signal), which are heavily correlated.

Multiple Models 2 : Metropolis-Hastings
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Multiple Models 2 : Metropolis-Hastings

SNPs

0.0

0.2

0.4

0.6

0.8

1.0




