November 3, 2006 @ IMMBI Annual Retreat

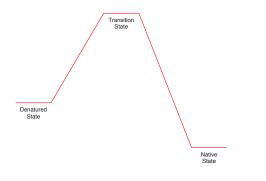
Statistics Schmatistics

On the folded, the unfolded, and the transition state

Ingo Ruczinski

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

Biostatistics for Laboratory Scientists


140.615 Introduction to Biostatistics for Laboratory Scientists I 3rd term (January 16 - March 9, 2007).

140.616 Introduction to Biostatistics for Laboratory Scientists II 4th term (March 19 - May 11, 2007).

MWF 10:30 - 11:50.

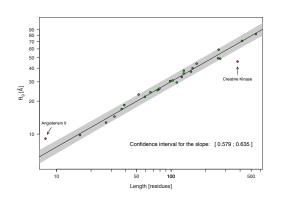
East Baltimore Campus Bloomberg School of Public Health 615 N Wolfe St

Energy Profile

Radius of Gyration of Denatured Proteins

Do chemically denatured proteins behave like random coils?

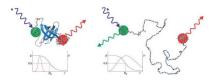
- \bullet The radius of gyration $R_{\rm g}$ of a protein is defined as the root mean square distance from each atom of the protein to their centroid.
- For an ideal (infinitely thin) random-coil chain in a solvent, the average radius of gyration of a random coil is a simple function of its length n:


 $R_{g} \propto n^{0.5}$

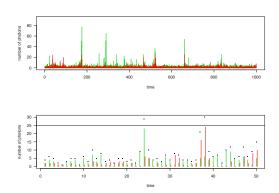
 \bullet For an excluded volume polymer in a solvent, the average radius of gyration of a random coil is given by $R_{o} \propto n^{0.588}$

----- The radius of gyration can be measured using small angle x-ray scattering.

Reference: Flory PJ (1953). Principles of Polymer Chemistry, Cornell University Press.


Radius of Gyration of Denatured Proteins

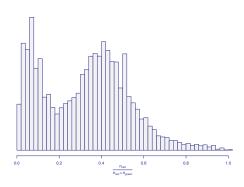
Deviations from Random Coil Behavior


Are there site-specific deviations from random coil dimensions?

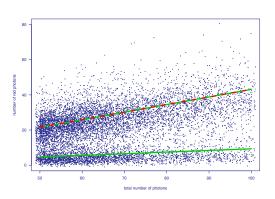
Förster Resonance Energy Transfer enables us to measure the distance between two dye molecules within a certain range. This can be used to study site-specific deviations from random coil dimensions in denatured peptides.

Heterence: Schuler B, Lipman EA, Eaton WA (2002). Abstract Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature, 419 (6908): 743-7.

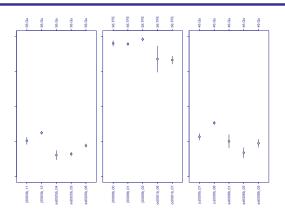
Deviations from Random Coil Behavior

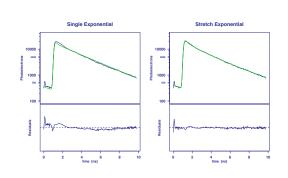

number of red photons

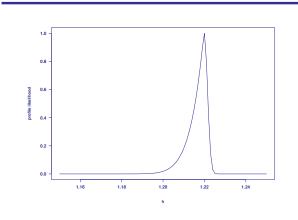
Deviations from Random Coil Behavior

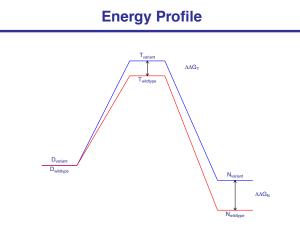

We have two underlying distributions for the green and red photons:

- \rightarrow One stemming from a peptide only having a donor dye.
- → One stemming from a peptide being properly tagged with a donor and an acceptor dye.

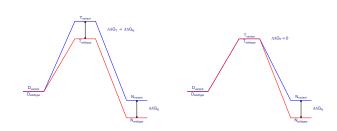

Deviations from Random Coil Behavior

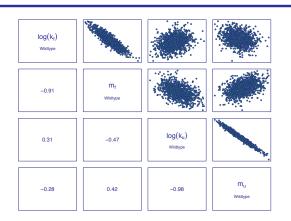

Deviations from Random Coil Behavior


Replication



Photon Lifetime

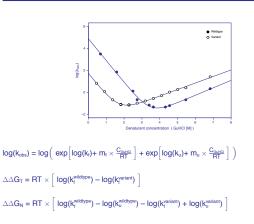



 \longrightarrow The Φ -value is defined as the ratio $\Delta\Delta G_T / \Delta\Delta G_N$.

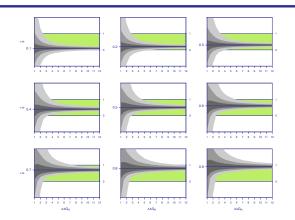
Energy Profile

- If the part of the protein that contains the variant amino acid is fully structured in the transition state, we have $\Delta\Delta G_T \approx \Delta\Delta G_N$, and hence $\Phi \approx 1$.
- If the part of the protein that contains the variant amino acid is equal in denatured and the transition state, we have $\Delta\Delta G_{T} \approx 0$, and hence $\Phi \approx 0$.

At least this is the idea . .

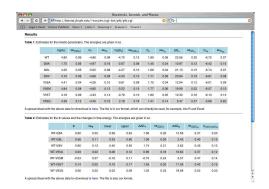

Standard Errors

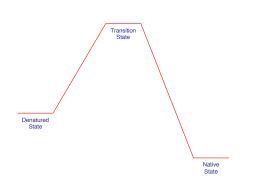
Standard Error


 $ln(k_{obs}) = log\Big(exp\Big[log(k_{f})+m_{f} \times \frac{[GuHCI]}{RI} \Big] + exp\Big[log(k_{u})+m_{u} \times \frac{[GuHCI]}{RI} \Big] \Big)$

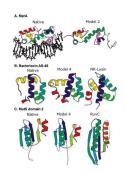
Phi-Value Estimation

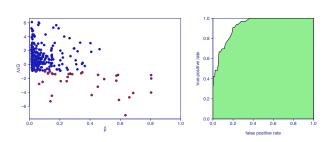
$\begin{aligned} & \mathbf{Standard \ Error} \\ & \mathbf{se}\left(\widehat{\Phi}\right) \ = \ |\Phi| \times \sqrt{\left(\frac{\sigma_{\mathsf{T}}}{\Delta \Delta \mathsf{G}_{\mathsf{T}}}\right)^2 - 2\rho_{\Delta \Delta \mathsf{G}}\left(\frac{\sigma_{\mathsf{T}}}{\Delta \Delta \mathsf{G}_{\mathsf{T}}}\right)\left(\frac{\sigma_{\mathsf{N}}}{\Delta \Delta \mathsf{G}_{\mathsf{N}}}\right) + \left(\frac{\sigma_{\mathsf{N}}}{\Delta \Delta \mathsf{G}_{\mathsf{N}}}\right)^2} \end{aligned}$


Standard Error


Web Server

4 × C +	http://biostat.jhsph.edu/~iruczins/software/phi/	Q * Q+	
		. et.	
[]] Ingo's Pand	Entrez PahMed News + Links + Running + Science + Travel +	and the second	Statement of the second se
Ruczinski L Sosn Methods for the au	ick TR, and Plazoo KW. courate estimation of confidence intervals on experimental 4-values.		
Please read: impo	ortant tile tormat information for uploading your data. For options and outp	ut information, please read the help file.	
1. Upload yo	ur data: (Choose File) 📄 example.csv		
2. Specify th	e temperature: T = 23 °C		
3. Specify th	e energy units: 🐵 kJ 💿 kcal		
4. Specify th	e comparisons:		
5. Specify th	e type of fit: inclividual fits parallel arms		
6. Specify th	e denaturant concentrations: folding rate: $\fbox{0}M$ - unfolding rate: $\fbox{0}M$		
7. Specify the coverage for the 4-value confidence intervals: 10/1% coverage			
8. Specify th	e number of significant digits in the output: $\overline{\mathbb{P}}$ significant digits		
0 And they	are off: (Sateria)		


Web Server


Energy Profile

Structure Prediction / Functional Annotation

Stability / Affinity

Acknowledgments

- UC Santa Barbara Department of Chemistry Biochemistry Miguel de los Rios, Kevin Plaxco.
- University of Chicago Department of Chemistry Tobin Sosnick.
- Rice University Department of Biochemistry and Cell Biology
 BK Muralidhara, Pernilla Wittung-Stafshede.
- UC Berkeley Department of Molecular and Cell Biology David Wildes, Susan Marqusee.
- University of Washington Department of Biochemistry
 David Baker & Lab.
- New York University Department of Biology and Department of Computer Science
 Richard "Chili" Bonneau.
- University of North Carolina Department of Biochemistry and Biophysics Deanne Sammond, Brian Kuhlman.

http://biostat.jhsph.edu/~iruczins