An Integrated Approach for the Assessment of Chromosomal Abnormalities

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health

June 6, 2007

Ingo Ruczinski Assessment of Chromosomal Abnormalities

伺 とく ヨ とく ヨ と

U.S. National Library of Medicine

◆□▶ ◆圖▶ ◆注▶ ◆注▶

æ

Mitosis and Meiosis

◆□▶ ◆圖▶ ◆注▶ ◆注▶

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Meiosis Errors

< • • • **•**

æ

≣ > _

Trisomy

ヘロト 人間 とくほ とくほ とう

∃ 990

Trisomy

Ingo Ruczinski Assessment of Chromosomal Abnormalities

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

■ _ _ のへ (?)

Disomies

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Ingo Ruczinski Assessment of Chromosomal Abnormalities

DNA changes

< □ > < 同 >

E ► < E ►

æ.

Missense mutation

U.S. National Library of Medicine

Ingo Ruczinski Assessment of Chromosomal Abnormalities

< □ > < 同 > < 回 > < 回 > < 回 >

э

The data

Ingo Ruczinski

Assessment of Chromosomal Abnormalities

Deletion

A B > 4
 B > 4
 B
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문에서 문어 :

æ

(日)

Amplification

Ingo Ruczinski Assessment of Chromosomal Abnormalities

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ -

æ

Uniparental Isodisomy

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ -

æ

Cancer samples

< □ > < 同 >

э

Mosaicism

Ingo Ruczinski Assessment of Chromosomal Abnormalities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

æ

<pre>> merged <- subset(merged, samples = 1) > summary(merged) \$NR06985</pre>									
	Chr 1 (Thr 2 Ch	r 3 Chr	4 Chr	5 Chr 6	Chr 7	Chr 8	Chr 9	
mean copy number	2.06	2.07 2	.09 2.	15 2.0	2.09	2.09	2.06	2.06	
sd copy number	0.45	0.45 0	.43 0.	46 0.4	15 0.46	0.45	0.43	0.45	
% heterozygous calls	0.26	0.26 0	.27 0.	27 0.2	27 0.29	0.28	0.28	0.27	
% homozygous calls	0.73	0.72 0	.72 0.	73 0.1	72 0.69	0.71	0.71	0.72	
% no calls	0.01	0.01 0	.01 0.	01 0.0	0.01	0.01	0.01	0.01	
	Chr 10	Chr 11	Chr 12	Chr 13	Chr 14	Chr 15	Chr 16	Chr 17	
mean copy number	2.04	2.06	2.06	2.11	2.09	2.02	2.00	1.98	
sd copy number	0.45	0.45	0.46	0.46	0.46	0.43	0.44	0.44	
% heterozygous calls	0.30	0.28	0.25	0.27	0.26	0.25	0.26	0.29	
<pre>% homozygous calls</pre>	0.69	0.70	0.74	0.72	0.73	0.74	0.72	0.70	
% no calls	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	Chr 18	Chr 19	Chr 20	Chr 21	Chr 22	Chr X 1	Cotal (autosomes)	
mean copy number	2.09	1.98	1.98	2.10	1.92	2.13		2.07	
sd copy number	0.46	0.44	0.43	0.47	0.44	0.44		0.45	
<pre>% heterozygous calls</pre>	0.26	0.24	0.30	0.27	0.26	0.26		0.27	
% homozygous calls	0.73	0.74	0.68	0.72	0.72	0.73		0.72	
% no calls	0.01	0.02	0.01	0.02	0.02	0.01		0.01	

Ingo Ruczinski Assessment of Chromosomal Abnormalities

프 > > 프 > -

æ

By SNP:

Estimate genotype and copy number for each SNP.

Within a sample:

Borrow strength between SNPs to infer regions of LOH and copy number changes.

Between samples:

Comparison between normal and disease populations to find chromosomal alterations associated with disease.

伺 とく ヨ とく ヨ と

More information

→ The confidence in genotype calls can differ substantially between SNPs!

The structure of the data we observe

→ At each SNP, we observe a noisy measure of the true copy number and genotype (and possibly also measures of confidence in those estimates).

Novel (and we believe, important) HMM features:

- Model the observation sequence of genotype calls and copy number jointly (Vanilla)
- Integrate confidence estimates of the genotype calls and copy number estimates (ICE)

The Vanilla HMM components

- Observations \widehat{CN} and \widehat{GT}
- Hidden states
- Initial state probability distribution
- Transition probabilities
- Emission probabilities

-

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990

Transition probabilities

Following suggestions in the literature, we model the transition probabilities as a function of the distance *d* between SNPs.

Specifically, let $\theta(d) \equiv 1 - e^{-2d}$ denote the probability that SNP *i* is not informative (*I*^c) for SNP at *i* + 1.

For example:

$$\tau_{\widehat{\bullet}|\widehat{\odot}}(d) = P\{\widehat{\bullet}_{i+1} | \widehat{\odot}_i, d\}$$
$$= P\{\widehat{\bullet}_{i+1}, I | \widehat{\odot}_i, d\} + P\{\widehat{\bullet}_{i+1}, I^c | \widehat{\odot}_i, d\}$$
$$= P\{\widehat{\bullet}_{i+1} | I, \widehat{\odot}_i, d\} \times P\{I | \widehat{\odot}_i, d\} + P\{\widehat{\bullet}_{i+1} | I^c, \widehat{\odot}_i, d\} \times P\{I^c | \widehat{\odot}_i, d\}$$
$$= P\{\widehat{\bullet}\} \times \theta(d).$$

直 マイ リマイ 見て

We assume conditional independence between copy number estimates and the genotype calls.

For example:

$$f(\widehat{CN}, \widehat{GT}| \otimes) = f(\widehat{CN}| \otimes) \times f(\widehat{GT}| \otimes)$$
$$= f\left\{ \widehat{CN} | \searrow \right\} \times f\left\{ \widehat{GT} | \bigcirc \right\}$$
$$= \beta_{\searrow} \left\{ \widehat{CN} \right\} \times \beta_{\bigcirc} \left\{ \widehat{GT} \right\}.$$

Integrating confidence estimates for genotype calls

Let $S_{\widehat{\text{GT}}}$ be the confidence score for the genotype estimate.

We can estimate from Hapmap the following densities:

$$f\left\{\mathbf{S}_{\widehat{\mathsf{HOM}}} \mid \widehat{\mathsf{HOM}}, \mathsf{HOM}\right\}, f\left\{\mathbf{S}_{\widehat{\mathsf{HOM}}} \mid \widehat{\mathsf{HOM}}, \mathsf{HET}\right\}, f\left\{\mathbf{S}_{\widehat{\mathsf{HET}}} \mid \widehat{\mathsf{HET}}, \mathsf{HOM}\right\}, f\left\{\mathbf{S}_{\widehat{\mathsf{HET}}} \mid \widehat{\mathsf{HET}}, \mathsf{HET}\right\}.$$

$$\rightarrow \text{ Note:} \qquad \begin{array}{l} f\left\{ \, {{\mathbb{S}}_{\widehat{{\mathsf{HOM}}}}} \, | \, \widehat{{\mathsf{HOM}}}, \odot \, \right\} & \approx \quad f\left\{ \, {{\mathbb{S}}_{\widehat{{\mathsf{HOM}}}}} \, | \, \widehat{{\mathsf{HOM}}}, {\mathsf{HOM}} \, \right\} \\ \\ f\left\{ \, {{\mathbb{S}}_{\widehat{{\mathsf{HET}}}}} \, | \, \widehat{{\mathsf{HET}}}, \odot \, \right\} & \approx \quad f\left\{ \, {{\mathbb{S}}_{\widehat{{\mathsf{HET}}}}} \, | \, \widehat{{\mathsf{HET}}}, {\mathsf{HOM}} \, \right\}. \end{array}$$

Emission Probabilities - Loss

Recall that

$$\begin{aligned} f(\widehat{\mathrm{CN}}, \widehat{\mathrm{GT}} | \otimes) &= f(\widehat{\mathrm{CN}} | \otimes) \times f(\widehat{\mathrm{GT}} | \otimes) \\ &= f\left\{ \left. \widehat{\mathrm{CN}} \right| \searrow \right\} \times f\left\{ \left. \widehat{\mathrm{GT}} \right| \bigcirc \right\} \\ &= \beta_{\searrow} \left\{ \widehat{\mathrm{CN}} \right\} \times \beta_{\bigcirc} \left\{ \widehat{\mathrm{GT}} \right\}. \end{aligned}$$

If the state for a particular SNP is Loss, we have

$$\beta_{\bigcirc} \left\{ \ \widehat{\mathsf{GT}}, \mathsf{S}_{\widehat{\mathsf{GT}}} \ \right\} \quad = \quad f \left\{ \ \widehat{\mathsf{GT}} \mid \bigcirc \right\} \times f \left\{ \ \mathsf{S}_{\widehat{\mathsf{GT}}} \mid \widehat{\mathsf{GT}}, \bigcirc \right\}.$$

伺 とく ヨ とく ヨ とう

э

Emission Probabilities - Retention

For retention, the true genotype can be HET or HOM:

$$\boldsymbol{\beta}_{\displaystyle{\bigcup}}\left\{\widehat{\mathsf{GT}}, \mathbf{S}_{\displaystyle{\widehat{\mathsf{GT}}}}\right\}$$

$$= f\left\{\widehat{\mathsf{GT}} \mid \mathbf{O}\right\} f\left\{\mathsf{S}_{\widehat{\mathsf{GT}}} \mid \widehat{\mathsf{GT}}, \mathbf{O}\right\}$$

$$= f\left\{\widehat{\mathsf{GT}} \mid \mathbf{O}\right\} \left(f\left\{\mathsf{S}_{\widehat{\mathsf{GT}}},\mathsf{HOM} \mid \widehat{\mathsf{GT}},\mathbf{O}\right\} + f\left\{\mathsf{S}_{\widehat{\mathsf{GT}}},\mathsf{HET} \mid \widehat{\mathsf{GT}},\mathbf{O}\right\} \right)$$

$$= -f\left\{\widehat{\mathsf{GT}}\mid \mathbf{0}\right\}\left(f\left\{\mathsf{S}_{\widehat{\mathsf{GT}}}\mid \mathsf{HOM}, \widehat{\mathsf{GT}}, \mathbf{0}\right\}f\left\{\mathsf{HOM}\mid \widehat{\mathsf{GT}}, \mathbf{0}\right\} + f\left\{\mathsf{S}_{\widehat{\mathsf{GT}}}\mid \mathsf{HET}, \widehat{\mathsf{GT}}, \mathbf{0}\right\}f\left\{\mathsf{HET}\mid \widehat{\mathsf{GT}}, \mathbf{0}\right\}\right)$$

$$= -f\left\{\widehat{\mathsf{GT}} \mid \mathbf{0}\right\} \left(f\left\{\mathsf{S}_{\widehat{\mathsf{GT}}} \mid \mathsf{HOM}, \widehat{\mathsf{GT}}\right\} f\left\{\mathsf{HOM} \mid \widehat{\mathsf{GT}}, \mathbf{0}\right\} + f\left\{\mathsf{S}_{\widehat{\mathsf{GT}}} \mid \mathsf{HET}, \widehat{\mathsf{GT}}\right\} f\left\{\mathsf{HET} \mid \widehat{\mathsf{GT}}, \mathbf{0}\right\}\right)$$

글 🕨 🖌 글 🕨 🗉

Vanilla ICE comparison

Bioconductor package: ICE

э

A HapMap sample

Many HapMap samples

SNP Trio

▲口> ▲理> ▲ヨ> ▲ヨ ● ④��

		VIIV 0325200	1		2	3		4	5
Father	Mother	Child	IUPI-P	hUPI-P	BPI	hUPI-M	IUPI-M	MI-S	MI-D
AA AB BB		AA	X	X	X	X	X		1
	AA	AB						X	
	0000	BB							X
	AB	AA	X	X	X		X		
		AB			X	X		1	
		BB					1	1	8
	1000 100	AA	X	X					
	BB	AB			x			1	2
		BB				X	x		2
AB AB B8		AA	X		x	X	×		
	AA	AB		X	X	7	2		3
		BB	X					1	
	AB	AA	X		X		X		
		AB		X	X	X			
		BB	X		X		X		10 million (1997)
	88	AA	X				8 2		
		AB		X	X				
		BB	X		X	×	×		
BB AI		AA				X	X		
	AA	AB			x				2
		BB	X	X		-	2	-	2
	AB	AA					1		1
		AB			X	X			1
		BB	X	X	X		X		
	88	AA					8		X
		AB						X	
	100000	BB	X	X	X	X	X		

(日)

Ingo Ruczinski Assessment of Chromosomal Abnormalities

・ロン・雪と・雪と・ ヨン・

SNP Trio

Ingo Ruczinski Assessment of Chromosomal Abnormalities

Probability

Given the number of SNPs for a particular event region type (M), among all uploaded informative autosomal SNPs (X) of that trio, what is the probability to have the observed number (N) or more informative non-BPI SNPs of that type clustered together solely by chance?

In other words, if the *M* SNPs of a particular event region type were randomly dispersed among the X informative autosomal SNPs, how probable is it to observe an event of the same or larger magnitude (defined by the number of consecutive SNPs of that event region)?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let *p* be the probability of a positive outcome in a Bernoulli trial (e.g. a 1 for 0/1 outcomes).
- Assume that we have Z trials.
- Let *LS* be the length of the largest block of consecutive ones in those *Z* trials.
- Let P_Z(LS < N) be the probability that LS is smaller than some number N.

伺 ト イヨ ト イヨト

- If Z < N, then $P_Z(LS < N) = 1$.
- If Z = N, then $P_Z(LS < N) = 1 p^N$.
- If Z > N, then

$$P_Z(LS < N) = \sum_{k=0}^{N-1} p^k (1-p) P_{Z-k-1}(LS < N)$$

- Tabulate the probabilities $P_1(LS < N), \ldots, P_N(LS < N)$.
- Calculate *P*_{N+1}(*LS* < *N*), *P*_{N+2}(*LS* < *N*), ..., *P*_X(*LS* < *N*), iteratively.
- Using p = M/X, the probability of having *N* or more informative SNPs of a particular non-BPI type clustered together solely by chance is equal to $1 P_X(LS < N)$.

- 「同 ト - 1 目 ト - 1 日 ト - 1

HMM for SNP Trio

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Rob Scharpf

• Giovanni Parmigiani

 Rafael Irizarry & Gang Benilton Carvalho, Wenyi Wang

Jonathan Pevsner & Lab

Nate Miller, Eli Roberson, Jason Ting

∃ ► < ∃ ►</p>

References

Carvalho B, Bengtsson H, Speed TP, Irizarry RA (2007)

Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. *Biostatistics*, 8(2):485-99.

Scharpf RB, Ting JC, Pevsner J, Ruczinski I (2007).

SNPchip: R classes and methods for SNP array data. *Bioinformatics*, 23(5): 627-8.

Scharpf RB, Parmigiani G, Ruczinski I (2007).

A hidden markov model for joint estimation of genotype and copy number in high-throughput SNP chips. *JHU Biostatistics Working papers*, #136.

Ting JC, Ye Y, Thomas GH, Ruczinski I, Pevsner J (2006).

Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan. *BMC Bioinformatics*, 7(1):25.

Ting JC, Roberson ED, Miller N, et al, Ruczinski I, Thomas GH, Pevsner J (2007). Visualization of uniparental inheritance, Mendelian inconsistencies, deletions and parent of origin effects in single nucleotide polymorphism trio data with SNPtrio. *Human Mutation*, (in press).

Wang W, Caravalho B, Miller N, Pevsner J, Chakravarti A, Irizarry RA (2006) Estimating genome-wide copy number using allele specific mixture models. *JHU Biostatistics Working papers*, #122.