## Detection of SNP-SNP Interactions in Case-Parent Trios

#### Li Q / Louis TA / Fallin MD / Pulver AE / Ruczinski I

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health

October 22, 2009

Li Louis Fallin Pulver Ruczinski SNP-SNP Interactions in Case-Parent Trios

## **TDT - Allelic**

The transmission disequilibrium test measures the over-transmission of an allele from parents to affected offsprings. For a set of n parents with alleles 1 and 2 at a genetic locus, each parent can be summarized by the transmitted and the non-transmitted allele:

|    |   | Non-TA |       |       |  |
|----|---|--------|-------|-------|--|
|    |   | 1      | 2     | Σ     |  |
| TA | 1 | а      | b     | a+b   |  |
|    | 2 | С      | d     | c + d |  |
| Σ  |   | a + c  | b + d | 2n    |  |

Only the heterozygous parents contribute information!

Under the null of no association,  $\frac{(b-c)^2}{b+c} \sim \chi_1^2$ 

 $\rightarrow$  Even better, use binom.test() in R.

Li

### TDT - Genotypic

Assume that at a certain locus the father has alleles 11 and the mother has alleles 12. The four *Mendelian children* thus have alleles 11, 12, 11, and 12.

Assume the affected proband has genotype 11.

The three *Pseudo controls* then have the genotypes 11, 12, and 12.

|                   | Y | Х  |
|-------------------|---|----|
| Affected proband  | 1 | 11 |
| Pseudo control #1 | 0 | 11 |
| Pseudo control #2 | 0 | 12 |
| Pseudo control #3 | 0 | 12 |

We can use conditional logistic regression to analyze the data.

Li Louis Fallin Pulver Ruczinski SNP-SNP Interactions in Case-Parent Trios 3

## Schizophrenia Study

- Case-parent trios of Ashkenazi Jewish descents.
- Diagnosis of SZ and SZA based on DSM IV.
- Dense coverage of 64 candidate genes.
- 375 SNPs on 11 chromosomes genotyped for 312 trios.
- Original analysis through single marker allelic TDT.
   → Fallin MD et al (2005), Am J Hum Genet 77(6): 918-36.

#### Goal:

Explore SNP-SNP interactions for association with SZ and SZA.

## **Biological and Statistical Interactions**



 $(SNPA^{D} \land SNPB^{R}) \lor (SNPB^{D} \land SNPA^{R})$ 

 $\longrightarrow$  Statistical interaction:

Deviation from additivity in a linear statistical model.

→ Epistasis: Masking of phenotype expressed by one gene by the effects of another gene.

How can we detect models such as

 $\mathsf{logit}(p) = \alpha + \beta \times \mathit{Ind}\{(\mathsf{SNP24}^{\mathsf{D}} \land \mathsf{SNP80}^{\mathsf{R}}) \lor (\mathsf{SNP24}^{\mathsf{R}} \land \mathsf{SNP80}^{\mathsf{D}})\} \dots?$ 

Li Louis Fallin Pulver Ruczinski SNP-SNP Interactions in Case-Parent Trios 5

## Logic Regression

• The predictors are the SNPs in dominant and recessive coding.

| X.R | X.D                |
|-----|--------------------|
| 0   | 0                  |
| 0   | 1                  |
| 1   | 1                  |
|     | X.R<br>0<br>0<br>1 |

• Let  $X_1, \ldots, X_k$  be binary (0/1) predictors, Y a response variable.

• Fit a model

$$g(\mathsf{E}(\mathsf{Y})) = \mathsf{b}_0 + \sum_{j=1}^t \mathsf{b}_j \cdot \mathsf{L}_j,$$

where  $L_i$  is a Boolean combination of the covariates, e.g.

$$\mathsf{L}_{j} = (\mathsf{X}_{1} \lor \mathsf{X}_{2}) \land \mathsf{X}_{4}^{\mathsf{c}}$$

• Determine the logic terms L<sub>i</sub> and estimate the b<sub>i</sub> simultaneously.

Ruczinski et al (2003), Journal of Computational and Graphical Statistics 12(3): 475-511.

### Trio Logic Regression

The rough idea is as follows:

- Pseudo controls are generated from the trio data, taking the LD block structure into account.
- Missing data are handled using haplotype-based imputation.
- The conditional logistic likelihood is used in logic regression to assess differences in cases and pseudo controls (just like in the genotypic TDT).

A tech report for the Methods paper is available, please email ingo@jhu.edu

Li Louis Fallin Pulver Ruczinski

**SNP-SNP Interactions in Case-Parent Trios** 

## **Trio Logic Regression**



## **Trio Logic Regression**

The steps in more detail:

| 1 | Estimate the haplotype blocks and the haplotype frequencies using the parents' genotypes.                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | For each block and each trio, sample haplotype pairs for the parents<br>and the offspring consistent with the observed genotypes in the trio,<br>allowing for missing data.                                  |
| 3 | Generate the probands genotype data from the haplotypes that were passed from the parents.                                                                                                                   |
| 4 | For each block and each trio, generate genotypes for three pseudo-controls (PC1, PC2, PC3) using the parents' haplotypes that were not passed to the proband. The assignment to PC1, PC2, and PC3 is random. |
| 5 | Assemble three pseudo-controls for each trio by augmenting the genotypes from the blocks.                                                                                                                    |
| 6 | For each locus, translate the genotype data into two binary variables in dominant and recessive coding.                                                                                                      |

## Software available soon!

Li

Louis

Fallin

Pulver

The trio logic regression methods are implemented as an augmentation in the logic regression R package LogicReg.

Ruczinski

SNP-SNP Interactions in Case-Parent Trios

- The R package trio contains functions to generate logic regression input from pedigree or genotype files, to check for Mendelian errors, to impute missing data, and to simulate case-parent trios.
- A software vignette is also available.

| Set up data fo | r trio logic regression or simulate trio data for high order SNP-SNP interaction         |
|----------------|------------------------------------------------------------------------------------------|
|                | 0 0                                                                                      |
|                | Documentation for package 'trio' version 1.0                                             |
|                | Help Pages                                                                               |
| trio           | Generate Trio Data Format Suitable for Trio Logic Regression                             |
| trio.check     | Check Case-Parent Trio Data for Mendelian Errors                                         |
| trio sim       | Simulate Case-Parent Trios with Population Disease Risk Dependent on SNP-SNP Interaction |

|   | Logic model                                                                            | $\exp(\hat{eta})$ |
|---|----------------------------------------------------------------------------------------|-------------------|
| 1 | $0.67 	imes I_{\left\{ \overline{302^{D}}  ight\}}$                                    | 1.94              |
| 2 | $0.89\times I_{\left\{\overline{302^{D}}\vee 166^{D}\right\}}$                         | 2.43              |
| 3 | $1.15\times I_{\left\{\overline{302^{D}}\vee 166^{D}\vee 148^{D}\right\}}$             | 3.14              |
| 4 | $1.30\times I_{\left\{\overline{302^{D}}\vee 166^{D}\vee 148^{D}\vee 368^{R}\right\}}$ | 3.65              |

| SNP 302 | Chromosome 12 | NOS1   | 3782219 |
|---------|---------------|--------|---------|
| SNP 166 | Chromosome 8  | CHRNB3 | 1530848 |
| SNP 148 | Chromosome 8  | PNOC   | 3735736 |
| SNP 368 | Chromosome 22 | COMT   | 740603  |

Li Louis Fallin Pulver Ruczinski

SNP-SNP Interactions in Case-Parent Trios

## Results

|          |                                                   | $\exp(\hat{eta})$ | $\hat{eta}_{(se)}$      | Z     | р     |
|----------|---------------------------------------------------|-------------------|-------------------------|-------|-------|
| Marginal | 302 <sup>D</sup>                                  | 1.94              | 0.67 <sub>(0.16)</sub>  | 4.12  | 4e-05 |
|          | 166 <sup>D</sup>                                  | 1.17              | 0.16 <sub>(0.22)</sub>  | 0.71  | 0.480 |
| Logic    | $\overline{302^D} \lor 166^D$                     | 2.43              | 0.89 <sub>(0.18)</sub>  | 4.89  | 1e-06 |
| Additive | 302 <sup>D</sup>                                  | 1.95              | 0.67 <sub>(0.16)</sub>  | 4.15  | 3e-05 |
|          | 166 <sup>D</sup>                                  | 1.21              | 0.19 <sub>(0.22)</sub>  | 0.86  | 0.390 |
| Additive | 302 <sup>D</sup>                                  | 2.46              | 0.90 <sub>(0.19)</sub>  | 4.86  | 1e-06 |
|          | 166 <sup>D</sup>                                  | 2.52              | 0.92 <sub>(0.33)</sub>  | 2.77  | 0.006 |
|          | 302 <sup><i>D</i></sup> : 166 <sup><i>D</i></sup> | 0.34              | -1.09 <sub>(0.34)</sub> | -2.87 | 0.004 |

# Results



## Results

For the three-way interaction model we get

|          |                                          | $\exp(\hat{eta})$ | $\hat{eta}_{(\textit{se})}$ | Z    | р     |
|----------|------------------------------------------|-------------------|-----------------------------|------|-------|
|          | 302 <sup>D</sup>                         | 1.94              | 0.67 <sub>(0.16)</sub>      | 4.12 | 4e-05 |
| Marginal | 166 <sup>D</sup>                         | 1.17              | 0.16 <sub>(0.22)</sub>      | 0.71 | 0.480 |
|          | 148 <sup><i>D</i></sup>                  | 1.54              | 0.43 <sub>(0.25)</sub>      | 1.70 | 0.088 |
| Logic    | $\overline{302^D} \vee 166^D \vee 148^D$ | 3.14              | 1.15 <sub>(0.20)</sub>      | 5.67 | 2e-08 |

The manuscript for this Application paper is available, please email ingo@jhu.edu

# http://biostat.jhsph.edu/~iruczins/ ingo@jhu.edu

| Li | Louis | Fallin | Pulver | Ruczinski | SNP-SNP Interactions in Case-Parent Trios |  |
|----|-------|--------|--------|-----------|-------------------------------------------|--|
|----|-------|--------|--------|-----------|-------------------------------------------|--|

15